精英家教网 > 高中数学 > 题目详情
16.如图,圆O的两条弦AB与CD相交于点E,圆O的切线CF交AB的延长线于F点,且AE:EB=3:2,EF=CF,CE=$\sqrt{2}$,ED=3$\sqrt{2}$,则CF的长为(  )
A.6B.5C.2$\sqrt{6}$D.2$\sqrt{5}$

分析 利用相交弦定理可得:AE,EB,再利用切割线定理即可得出.

解答 解:设AE=3x,则EB=2x,
∵AE•EB=CE•ED.
∴3x•2x=$\sqrt{2}×3\sqrt{2}$,
解得x=1.
∴AE=3,BE=2.
设FB=y,则FE=y+2=CF,
由切割线定理可得:CF2=FB•FA,
∴(y+2)2=y(y+5),
解得y=4,
∴CF=6.
故选:A.

点评 本题考查了相交弦定理、切线长定理、圆的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ;
②若α⊥β,m∥α,则m⊥β;           
③若m⊥α,m∥β,则α⊥β;       
④若m∥n,m∥α,则n∥α.
其中真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,已知AD=PD,PA=6,BC=8,DF=5,求证:
(1)直线PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且$\frac{BE}{EC}$=λ.
(Ⅰ)求证:平面ADM⊥平面PBC;
(Ⅱ)是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$?若存在,求出实数λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱椎P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(Ⅰ)求证:平面ABC⊥平面APC.
(Ⅱ)若动点M在底面三角形ABC内(包括边界)运动,使二面角M-PA-C的余弦值为$\frac{3\sqrt{93}}{31}$,求此时∠MAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),曲线C的极坐标方程是ρ=$\frac{sinθ}{{{{cos}^2}θ}}$,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(-1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MA•MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ABCD为梯形,AB∥DC,对角线AC,BD交于点O,CE⊥平面ABCD,CE=AD=DC=BC=1,∠ABC=60°,F为线段BE上的点,$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{EB}$.
(I)证明:OF∥平面CED;
(Ⅱ)求平面ADF与平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为(  )
A.36πB.45πC.32πD.144π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\left\{\begin{array}{l}{1,x∈[0,1]}\\{x-3,x∉[0,1]}\end{array}\right.$,若f(f(x))=1成立,求x的取值范围.

查看答案和解析>>

同步练习册答案