精英家教网 > 高中数学 > 题目详情
11.已知集合M={1,2,3},N={2,3},则(  )
A.M=NB.M∩N=∅C.M⊆ND.N?M

分析 利用子集的定义,即可得出结论.

解答 解:∵集合M={1,2,3},N={2,3},
∴N?M,
故选:D.

点评 本题主要考查集合关系的应用,正确理解子集的含义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1•e2+1的取值范围为(  )
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数g(x)=Asin(ωx+φ)+B(A>0,ω>0),满足:当x1,x2∈R时,有|g(x1)-g(x2)|≤$\frac{1}{4}$,当相位为$\frac{π}{6}$时,g(x)的值为$\frac{7}{16}$.
(1)当g(x)的周期为π,初相为$\frac{π}{3}$,且g(x)≥$\frac{1}{2}$时,求x的范围;
(2)若f(x)=ax-$\frac{3}{2}$x2的最大值不大于$\frac{1}{6}$,且f(g(x))≥$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)用辗转相除法求840与1764的最大公约数.
(2)用更相减损术求561与255的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A={x|x2+5x-6=0},B={x|mx+1=0},且A∩B=B,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=n2-2n-1,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求a的值;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+bx+4满足f(1+x)=f(1-x),且函数y=f(3x)-m在x∈[-1,2]上有零点,则实数m的取值范围为[$\frac{31}{9}$,11].

查看答案和解析>>

同步练习册答案