精英家教网 > 高中数学 > 题目详情
已知
a
=(cos(2x-
π
3
),sin(x-
π
4
)),
b
=(1,2sin(x+
π
4
),f(x)=
a
b

(1)求函数f(x)的最小正周期
(2)求函数f(x)的增区间和f(x)图象的对称轴方程;
(3)求函数f(x)在区间[-
π
12
π
2
]
上的值域.
分析:(1)求函数f(x)的最小正周期
(2)求函数f(x)的增区间和f(x)图象的对称轴方程;
(3)求函数f(x)在区间[-
π
12
π
2
]
上的值域.
解答:(1)求函数f(x)的最小正周期
(2)求函数f(x)的增区间和f(x)图象的对称轴方程;
(3)求函数f(x)在区间[-
π
12
π
2
]
上的值域.
点评:1111
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
2
,则tanα+cotα等于(  )
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα)
b
=(cosβ,sinβ)
,其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
.
b
a
-k
.
b
的长度相等,求α-β的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海一模)已知
a
=(sin(
π
2
+x),cos(π-x)),
b
=(cosx,-sinx)
,函数f(x)=
a
b

(1)求函数f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(A)=1,BC=2,B=
π
3
,求AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=-
2
,则tan(θ-
π
3
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),且
a
b
之间满足关系:|k
a
+
b
|=
3
|
a
-k
b
|
,其中k>0,则
a
b
取得最小值时,
a
b
夹角θ
的大小为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案