精英家教网 > 高中数学 > 题目详情
设函数f(x)=
13
x3-ax2-3a2x+1 (a>0)

(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.
分析:(1)直接利用多项式函数的求导公式求解
(2)判定函数当x变化时,f'(x)的变化情况,f'(x)>0求得单调增区间,f'(x)<0求得单调减区间,f'(x)的变化情况研究出函数的极值
(3)研究x∈[a+1,a+2]时,恒有f'(x)>-3a成立的问题,可转化成f'(x)的最小值大于-3a成立.
解答:解:(I)f'(x)=x2-2ax-3a2.(3分)
(Ⅱ)令f'(x)=x2-2ax-3a2=0,得x=-a或x=3a.(5分)
则当x变化时,f(x)与f'(x)的变化情况如下表:
精英家教网
可知:当x∈(-∞,-a)时,函数f(x)为增函数,当x∈(3a,+∞)时,函数f(x)也为增函数.(6分)
当x∈(-a,3a)时,函数f(x)为减函数.(7分)当x=-a时,f(x)的极大值为
5
3
a3+1
;(8分)
当x=3a时,f(x)的极小值为-9a3+1.(9分)
(Ⅲ)因为f'(x)=x2-2ax-3a2的对称轴为x=a,
且其图象的开口向上,所以f'(x)在区间[a+1,a+2]上是增函数.(10分)
则在区间[a+1,a+2]上恒有f'(x)>-3a等价于f'(x)的最小值大于-3a成立.
所以f'(a+1)=(a+1)2-2a(a+1)-3a2=-4a2+1>-3a.(12分)
解得-
1
4
<a<1
.又a>0,故a的取值范围是(0,1)
点评:本题考查了利用导数研究函数的单调性、极值以及恒成立问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河南模拟)设函数f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的坐标;
(Ⅱ)当0<a<
1
2
时,求函数f(x)的单调区间;
(Ⅲ)当a=
1
3
时,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求实数b的取值范围.(e是自然对数的底,e<
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)设x0是函数f(x)=(
1
3
)x-log2x
的零点.若0<a<x0,则f(a)的值满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,则实数a的取值范围为
a>1或a<-2
a>1或a<-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在点(1,f(1))处的切线与y轴和直线x-2y=0围成的三角形面积等于
1
4
,求a的值;
(II)当a<2时,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案