精英家教网 > 高中数学 > 题目详情
已知点P是椭圆
x2
1+a2
+
y2
a2
=1与双曲线
x2
1-a2
-
y2
a2
=1的交点,F1F2
是椭圆焦点,则cos∠F1PF2=
0
0
分析:由题意可得,椭圆与双曲线的焦点相同且F1F2=2,结合由椭圆的 定义可知,PF1+PF2=2
1+a2
,双曲线的定义可知,|PF1-PF2|=2
1-a2
,从而可得PF12+PF22F2F12可求
解答:解:由题意可得,椭圆与双曲线的焦点相同且F1F2=2
由椭圆的 定义可知,PF1+PF2=2
1+a2

由双曲线的定义可知,|PF1-PF2|=2
1-a2

上式两边同时平方相加可得2(PF12+PF22)=8
PF12+PF22=4
F2F12=4
PF12+PF22F2F12
∴cos∠F1PF2=0
故答案为:0
点评:本题主要考查了椭圆与双曲线的定义的简单应用,解题的关键是对所给的式子进行灵活的变形
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F是椭圆
x2
1+a2
+y2=1(a>0)
右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足
MN
NF
=0
,若点P满足
OM
=2
ON
+
PO

(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断
FS
FT
是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知点F是椭圆
x2
1+a2
+y2=1(a>0)
右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足
MN
NF
=0
,若点P满足
OM
=2
ON
+
PO

(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断
FS
FT
是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案