精英家教网 > 高中数学 > 题目详情

【题目】为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:

处罚金额(单位:元)

5

10

15

20

会闯红灯的人数

50

40

20

0

若用表中数据所得频率代替概率.

(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?

(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?

【答案】(1);(2).

【解析】

(1)用频率近似概率计算可得行人闯红灯的概率会降低.

(2)由题意可知类市民和类市民各抽出两人,列出所有可能的事件,结合古典概型计算公式可得抽取4人中前两位均为类市民的概率是.

(1)设当罚金定为10元时,闯红灯的市民改正行为为事件

.

∴当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低.

(2)由题可知类市民和类市民各有40人,

故分别从类市民和类市民各抽出两人,

设从类市民抽出的两人分别为,设从类市民抽出的两人分别为.

设从类与类市民按分层抽样的方法抽取4人依次进行深度问卷为事件

则事件中首先抽出的事件有,共6.

同理首先抽出的事件也各有6.

故事件共有.

设从抽取4人中前两位均为类市民为事件则事件.

.

∴抽取4人中前两位均为类市民的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.

(1)根据以上数据建立一个2×2列联表;

(2)判断性别与休闲方式是否有关系.

下面临界值表供参考:

P(K2≥k)

0.10

0.05

0.010

0.001

k

2.706

3.841

6.635

10.828

(参考公式:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是除外的全体实数,的几组对应值列表如下:

其中,_________

2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数性质;

4)进一步探究函数图象发现:

①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________

②方程_______个实数根;

③关于的方程个实数根,的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=loga)(0<a<1,b>0)为奇函数,当x∈(﹣1,a]时,函数y=fx)的值域是(﹣∞,1].

(1)确定b的值;

(2)证明函数y=fx)在定义域上单调递增,并求a的值;

(3)若对于任意的t∈R,不等式ft2﹣2t)+f(2t2k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线交于两点,与椭圆交于两点,直线为坐标原点)的斜率分别为,若.

(1)是否存在实数,满足,并说明理由;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人投篮命中的概率分别为,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.

(1)求比赛结束后甲的进球数比乙的进球数多1的概率;

(2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项都为正数的数列,其前项和为,且的等差中项.

(1)求证:数列为等差数列;

(2)求数列的通项公式;

(3)设,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上任意一点到两焦点距离之和为,离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线的斜率为,直线与椭圆交于两点.点为椭圆上一点,求的面积的最大值及此时直线的直线方程.

查看答案和解析>>

同步练习册答案