精英家教网 > 高中数学 > 题目详情

【题目】随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用AB两款订餐软件的商家中分别随机抽取50个商家,对它们的平均送达时间进行统计,得到频率分布直方图如下:

1)试估计使用A款订餐软件的50个商家的平均送达时间的众数及平均数(同一组中的数据用该组区间的中点值作代表).

2)根据以上抽样调查数据,将频率视为概率,回答下列问题:

①能否认为使用B款订餐软件平均送达时间不超过40分的商家达到75%

②如果你要从AB两款订餐软件中选择一款订餐,你会选择哪款?说明理由.

【答案】1)众数为55,平均数为40;(2)①能;②B款,理由见解析

【解析】

1)取频率最大的那组数据的中点值即为众数,利用平均数的计算公式直接计算即可求得平均数;

2)①计算出使用B款订餐软件“平均送达时间”不超过40分的频率,比较即可得解;②计算出使用B款订餐软件商家的“平均送达时间”的平均数,与使用A款订餐软件商家的“平均送达时间”的平均数进行比较即可得解.

1)依题意可得,使用A款订餐软件的50个商家的平均送达时间的众数为55.

使用A款订餐软件的50个商家的平均送达时间的平均数为

.

2)①使用B款订餐软件平均送达时间不超过40分的商家的比例估计值为

.

故可以认为使用B款订餐软件平均送达时间不超过40分的商家达到75%.

②使用B款订餐软件的50个商家的平均送达时间的平均数为

所以选B款订餐软件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙,丙,丁四位同学课余参加巴蜀爱心社和巴蜀文学风的活动,每人参加且只能参加一个社团的活动,并且参加每个社团都是等可能的.

(1)求巴蜀爱心社和巴蜀文学风都至少有1人参加的概率;

(2)求甲,乙在同一个社团,丙,丁不在同一个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

时,恒成立,求的值;

恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)求函数的单调递增区间;

(2)已知在ABC中,ABC的对边分别为abc,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为内角所对的边,且满足.

(Ⅰ)的大小;

(Ⅱ)现给出三个条件:.

试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.

组号

分组

频数

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合计

100

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;

(2)求频率分布直方图中的ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.

(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;

(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.

查看答案和解析>>

同步练习册答案