【题目】如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已知平面 为的中点, 面.
(1)求的长;
(2)求证:面面;
(3)求平面与平面相交所成锐角二面角的余弦值.
【答案】(1);(2)证明见解析;(3).
【解析】试题分析:(1)取的中点,连接,则为梯形的中位线, ,先证明四边形为平行四边形, ,可得;(2)由平面面,结合可得面,因为 ,所以面,从而得面面;(3) 以为原点, 所在直线分别为 轴建立空间直角坐标系,分别求出平面与平面的一个法向量,利用空间向量夹角余弦公式可得结果.
试题解析:(1)取的中点,连接,则为梯形的中位线,
又,所以
所以四点共面,因为面,且面面所以
所以四边形为平行四边形, 所以
(2)由题意可知平面面;又且平面
所以面,因为 所以面
又面, 所以面面;.
(3)以为原点, 所在直线分别为轴建立空间直角坐标系设为的中点,则,易证: 平面
平面的法向量为
设平面的法向量为,
由得 所以
所以,由所求二面角为锐二面角角,所以平面与平面相交所成锐角二面角的余弦值.
【方法点晴】本题主要考面面垂直的证明、线面平行的定断与性质以及利用空间向量求二面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.
(3)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数和方差,(同一组中的数据用该区间的中点值作代表);
(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率;
(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是正方体的平面展开图,在这个正方体中,正确的命题是( )
A. BD与CF成60°角 B. BD与EF成60°角 C. AB与CD成60°角 D. AB与EF成60°角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下列结论正确的是( )
A. 把上所有的点向右平移个单位长度,再把所有图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到曲线
B. 把上所有点向左平移个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线
C. 把上各点的横坐标缩短到原来的倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线
D. 把上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, 于, .将沿折起至,使得平面平面(如图2), 为线段上一点.
图1 图2
(Ⅰ)求证: ;
(Ⅱ)若为线段中点,求多面体与多面体的体积之比;
(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com