(1)a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621516220.gif)
,n为奇数;a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621548200.gif)
,n为偶数;
(2)S
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621594326.gif)
-3,n为奇数;S
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
=3(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621548200.gif)
-1),n为偶数;
当n为奇数时,,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621657573.gif)
3(1-ka
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621688140.gif)
(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621594326.gif)
-3)a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318162173574.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621766128.gif)
k
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621782140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621797640.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621766128.gif)
K
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621782140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621844249.gif)
-(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621860219.gif)
2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621594326.gif)
-1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621891394.gif)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621860219.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621922199.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621594326.gif)
+1
F(n)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621891394.gif)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621860219.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621922199.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621594326.gif)
+1单调递减;F(1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622094224.gif)
最大;
K
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621782140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622094224.gif)
当n为偶数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621657573.gif)
3(1-ka
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621688140.gif)
3(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621548200.gif)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318162221865.gif)
1)a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621501178.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621766128.gif)
k
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621782140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622281588.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622312370.gif)
-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621548200.gif)
+1
F(n)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622312370.gif)
-2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181621548200.gif)
+1单调递减,所以n=2时F(2)=-0.5
K
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622374262.gif)
综合上面可得k
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181622390254.gif)
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
(本题13分)
已知等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830466380.gif)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830482192.gif)
项和是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830497220.gif)
,满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830513447.gif)
.
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830466380.gif)
的通项
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830653212.gif)
及前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830482192.gif)
项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830497220.gif)
;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318183076372.gif)
数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830778379.gif)
满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231818308561126.gif)
,求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181831059377.gif)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181830482192.gif)
项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181831090211.gif)
;
(Ⅲ)若对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181831106247.gif)
,恒有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181831121497.gif)
成立,求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181831153192.gif)
的取值范围.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
.若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181713121507.png)
是等差数列,公差
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181713137450.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181713152510.png)
成等比数列,则公比为 ( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
((本小题满分12分)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181645587253.gif)
为等差数列,
Sn为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181645587253.gif)
的前
n项和,已知
S7=7,
S15=75,
Tn为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181645618486.gif)
的前
n项和,求
Tn.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182216994250.gif)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182217010438.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318221702572.gif)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182216994250.gif)
的通项公式;
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182217057440.gif)
,求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182217072251.gif)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182217088189.gif)
项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182217119210.gif)
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909193267.gif)
为等差数列,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909208347.gif)
,且它们的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909224192.gif)
项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909240220.gif)
有最大值,则使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909255386.gif)
的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180909224192.gif)
的最大
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318090928672.gif)
值为 ( )
A.11 | B.19 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318090930285.gif) | C.20![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318090931872.gif) | D.21 |
查看答案和解析>>