精英家教网 > 高中数学 > 题目详情
(2007•嘉定区一模)已知函数f(x)=
|x+m-1|x-2
,m>0且f(1)=-1.
(1)求实数m的值;
(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:
①有且仅有一个实数解;
②有两个不同的实数解;
③有三个不同的实数解.
分析:(1)将已知条件f(1)=-1,解得|m|=1,再结合m是正数,可得m=1;
(2)将(1)的结论代入得(-∞,m-1]=(-∞,0]根据函数单调性的定义,可设x1,x2∈(-∞,0],且x1<x2,通过作差化简整理,最后得到f(x1)-f(x2)<0,说明函数在区间(-∞,m-1]上是个增函数;
(3)首先,方程f(x)=kx有一个解x=0,然后分x>0和x<0加以讨论:当x>0且x≠2时,方程转化为
x
x-2
=kx
,得到x=2+
1
k
,解不等式得k<-
1
2
或k>0;当x<0时,则
-x
x-2
=kx
,解得x=2-
1
k
,解不等式得0<k<
1
2
.最后综合可得方程f(x)=kx解集的情况.
解答:解:(1)由f(1)=-1,得
|m|
-1
=-1
,|m|=1,
∵m>0,∴m=1. (4分)
(2)由(1),m=1,从而f(x)=
|x|
x-2
,只需研究f(x)在(-∞,0]上的单调性.
当x∈(-∞,0]时,f(x)=
-x
x-2

设x1,x2∈(-∞,0],且x1<x2,则f(x1)-f(x2)=
-x1
x1-2
-
-x2
x2-2
=
2(x1-x2)
(x1-2)(x2-2)
,(6分)
∵x1<x2≤0,∴x1-x2<0,x1-2<0,x2-2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在区间(-∞,0]上是单调递增函数. (10分)
(3)原方程即为
|x|
x-2
=kx
…①
x=0恒为方程①的一个解. (11分)
若x<0时方程①有解,则
-x
x-2
=kx
,解得x=2-
1
k

2-
1
k
<0
,得 0<k<
1
2
; (13分)
若x>0且x≠2时方程①有解,则
x
x-2
=kx
,解得x=2+
1
k

2+
1
k
>0
2+
1
k
≠2
,得k<-
1
2
或k>0. (15分)
综上可得,当k∈[-
1
2
,0]
时,方程f(x)=kx有且仅有一个解;
k∈(-∞,-
1
2
)∪[
1
2
,+∞)
时,方程f(x)=kx有两个不同解;
k∈(0,
1
2
)
时,方程f(x)=kx有三个不同解.   (18分)
点评:本题以含有绝对值的分式函数的形式为例,考查了函数零点的分布与单调性等知识点,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•嘉定区一模)下列4个命题中,真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉定区一模)无穷数列{an}中,an=
1
2n
,则a2+a4+…+a2n+…=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉定区一模)若复数
m2+i1+mi
(i为虚数单位)是纯虚数,则实数m=
0或-1
0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉定区一模)在平面直角坐标系内,直线l1:x-2ay+1=0和直线l2:2ax+y-1=0(a∈R)的关系是(  )

查看答案和解析>>

同步练习册答案