精英家教网 > 高中数学 > 题目详情

题文已知函数.
(1)求函数的单调递减区间;
(2)若不等式对一切恒成立,求的取值范围.

(1)(2)

解析试题分析:(1)由于
时,,令,可得.
时, 单调递增.
所以函数的单调递减区间为.     4分
(2)设,
时, ,
,可得,即
,可得.
所以为函数的单调递增区间, 为函数的单调递减区间.
时, ,可得为函数的单调递减区间.
所以函数的单调递增区间为,单调递减区间为.
所以函数,
要使不等式对一切恒成立,即对一切恒成立,
所以.                                                        …12分
考点:本小题主要考查导数的计算,单调区间的求解以及恒成立问题的解决。
点评:求分段函数的单调区间时,要注意分段讨论求解,而恒成立问题一般转化为最值问题求解,另外因为此类问题一般以解答题的形式出现,所以一定要注意步骤完整.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求使上是减函数的充要条件;
(2)求上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)要使在区间(0,1)上单调递增,试求a的取值范围;
(2)若时,图象上任意一点处的切线的倾斜角为,试求当时,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知时有极值0。
(1)求常数 的值;
(2)求的单调区间。
(3)方程在区间[-4,0]上有三个不同的实根时实数的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.
(1)求a,b的值;
(2)证明:≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线在点处的切线与直线平行,求出这条切线的方程;
(Ⅱ)若,讨论函数的单调区间;
(Ⅲ)对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)当时,方程有实根,求实数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若无极值点,但其导函数有零点,求的值;
(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)
(2)是否存在实数,使上的最小值为,若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案