精英家教网 > 高中数学 > 题目详情
下列命题错误的是(  )
A、命题“若x2<1,则-1<x<1”的逆否命题是若x≥1或x≤-1,则x2≥1
B、“am2<bm2”是”a<b”的充分不必要条件
C、命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0
D、命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
考点:命题的真假判断与应用
专题:简易逻辑
分析:对于A,写出逆否命题,比照后可判断真假;
对于B,利用必要不充分条件的定义判断即可;
对于C,写出原命题的否定形式,判断即可.
对于D,根据复合命题真值表判断即可;
解答: 解:命题“若x2<1,则-1<x<1”的逆否命题是若x≥1或x≤-1,则x2≥1,故A正确;
“am2<bm2”⇒”a<b”为真,但”a<b”⇒“am2<bm2”为假(当m=0时不成立),故“am2<bm2”是”a<b”的充分不必要条件,故B正确;
命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0,故C正确;
命题“p或q”为真命题,则命题“p”和命题“q”中至少有一个是真命题,故D错误,
故选:D
点评:本题借助考查命题的真假判断,考查充分条件、必要条件的判定及复合命题的真假判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足g(-2)=
1
4
,又函数f(x)=
-g(x)+n
2g(x)+m
是定义域为R的奇函数
(1)求函数f(x)的解析式;
(2)判断f(x)的单调性(无需证明),并求函数f(x)的值域;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
2
sin(
π
4
+2x)+1.
(1)求函数f(x)的最大值和最小值以及取最大、最小值时相应x的取值集合;
(2)写出函数f(x)的单调递增区间.
(3)作出此函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:
x+1
x-2
≤0
,q:x2-(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的是(  )
A、一个命题的逆命题为真,则它的逆否命题一定为真
B、一个命题的否命题为真,则它的逆命题一定为真
C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
D、“a>b”与“a+c>b+c”不等价

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
x+2
x+1
(a>0且a≠1).
(1)解不等式f(x)>0;
(2)若a>1,求f(x)的单调区间并指出增减性;
(3)若a=2,且x∈[-
15
7
,-2)∪(-1,0],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(  )
A、AB与CD所成的角为60°
B、AB与CD相交
C、AB⊥CD
D、AB∥CD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+(1.5)-2
(2)已知f(x)=log
1
4
2x-log
1
4
x+5,x∈[2,4],求f(x)的最值.

查看答案和解析>>

同步练习册答案