分析 (1)连接BD,根据条件可知△ABD是正三角形,而G为AD边的中点,则BG⊥AD,BG?平面ABCD又平面APD⊥平面ABCD,平面APD∩平面ABCD=AD,根据面面垂直的性质定理可知BG⊥平面APD;
(2)连接PG,由侧面PAD为正三角形,G为AD边的中点得到AD⊥PG,再由(1)可知BG⊥AD,PG,BG?平面PBG,PG∩BG=G,根据线面垂直的判定定理可知AD⊥平面PBG,而PB?平面PBG,根据线面垂直的性质可知AD⊥PB.
解答 证明:(1)连接BD,由已知∠DAB=60°,且四边形ABCD是菱形,
∴△ABD是正三角形,又G为AD边的中点,
∴BG⊥AD,
∵BG?平面ABCD,又平面APD⊥平面ABCD,平面APD∩平面ABCD=AD,
∴BG⊥平面APD
(2)连接PG,由侧面PAD为正三角形,G为AD边的中点,
∴AD⊥PG,
由(1)可知BG⊥AD,PG,BG?平面PBG,PG∩BG=G,
∴AD⊥平面PBG,
又PB?平面PBG,
∴AD⊥PB.
点评 本小题主要考查直线与平面垂直的判定,以及线面垂直的性质等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (±2,0) | B. | (0,±2) | C. | (±2$\sqrt{3}$,0) | D. | (0,±2$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -4 | B. | 2 | C. | 8 | D. | $-\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com