精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1的一个焦点F作一条渐近的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为(  )
A、
2
B、2
C、
5
D、
3
分析:先设垂足为D,根据双曲线方程可求得其中一个渐近线和焦点F的坐标,进而得到D点坐标.表示直线DF的斜率与直线OD的斜率乘积为-1,进而得到a和b的关系,进而求得离心率.
解答:解:设垂足为D,
根据双曲线方程可知其中一个渐近线为y=
b
a
x,焦点为F(
a2+b2
,0)
所以D点坐标(
a2+b2
2
b
a2+b2
a

∴kDF=
b
a2+b2
a
-0
a2+b2
2
-
a2+b2
=-
b
a

∵OD⊥DF
∴kDF•kOD=-1
b
a
=
a
b
,即a=b
∴e=
c
a
=
a2+b2
a
=
2

故选A.
点评:本题主要考查了双曲线的简单性质,解决的关键是熟练掌握双曲线关于渐近线、焦点、标准方程等基本知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案