【题目】受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:
品牌 | 甲 | 乙 | |||
首次出现故障时间x(年) | 0<x<1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润(万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1 , 生产一辆乙品牌轿车的利润为X2 , 分别求X1 , X2的分布列;
(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.
【答案】解:(I)设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A)=
(II)依题意得,X1的分布列为
X1 | 1 | 2 | 3 |
P |
X2的分布列为
X2 | 1.8 | 2.9 |
P |
(III)由(II)得E(X1)=1× +2× +3× =2.86(万元 )
E(X2)=1.8× +2.9× =2.79(万元 )
∵E(X1)>E(X2),
∴应生产甲品牌轿车.
【解析】(I)根据保修期为2年,可知甲品牌轿车首次出现故障发生在保修期内的轿车数量为2+3,由此可求其概率;(II)求出概率,可得X1、X2的分布列;(III)由(II),计算期为E(X1)=1× +2× +3× =2.86(万元 ),E(X2)=1.8× +2.9× =2.79(万元 ),比较期望可得结论.
【考点精析】根据题目的已知条件,利用离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】下列说法:①残差可用来判断模型拟合的效果;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过 ;
④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);
其中错误的个数是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 : ( )的焦点为 ,点 在抛物线 上,且 ,直线 与抛物线 交于 , 两点, 为坐标原点.
(1)求抛物线 的方程;
(2)求 的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标中,设椭圆:的左右两个焦点分别为,,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.
(1)求椭圆的方程;
(2)已知,经过点且斜率为,直线与椭圆有两个不同的和交点,请问是否存在常数,使得向量与共线?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),( ),圆C的参数方程 (θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)设数表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com