【题目】正△ABC的边长为2, CD是AB边上的高,E、F分别是AC和BC的中点(如图(1)).现将△ABC沿CD翻成直二面角A-DC-B(如图(2)).在图(2)中:
(1)求证:AB∥平面DEF;
(2)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论;
(3)求二面角E-DF-C的余弦值.
【答案】(1) 见解析.(2) 见解析.(3) .
【解析】试题分析:(Ⅰ)由E、F分别是AC、BC的中点,得EF∥AB,由此能证明AB∥平面DEF;(Ⅱ)以点D为坐标原点,以直线DB、DC、DA分别为x轴、y轴、z轴,建立空间直角坐标系.利用向量法能在线段BC上存在点P,使AP⊥DE;(Ⅲ)分别求出平面CDF的法向量和平面EDF的法向量,利用同向量法能求出二面角E-DF-C的平面角的余弦值
试题解析:(1)证明:在△ABC中,因为E、F分别是AC、BC的中点,
所以EF∥AB.
又AB平面DEF,EF平面DEF,
所以AB∥平面DEF.
(2)以点D为坐标原点,以直线DB、DC、DA分别为x轴、y轴、z轴建立空间直角坐标系(图略).则A(0,0,1),B(1,0,0),C(0, ,0),E(0, , ),F(, ,0),=(1,0,-1),=(-1, ,0),=(0, , ),=(, ,0).
设=λ,则=+=(1-λ, λ,-1),
注意到AP⊥DE·=0λ== ,
所以在线段BC上存在点P,使AP⊥DE.
(3)平面CDF的一个法向量=(0,0,1),设平面EDF的法向量为n=(x,y,z),
则,即,取n=(3,- ,3),
cos〈,n〉==,
所以二面角EDFC的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱中,侧棱底面,,,,,为棱的中点.
(1)证明;
(2)求二面角的余弦值;
(3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是奇函数,则实数m的值是______;若函数f(x)在区间[-1,a-2]上满足对任意x1≠x2,都有成立,则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数.
(1)求a的值,并证明是R上的增函数;
(2)若关于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若是定义在上的偶函数,且在上是增函数,,则;
②若锐角、满足c,则;
③若,则对恒成立;
④要得到的图像,只需将的图像向右平移个单位:
其中真命题的个数有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资,两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)
(1)该公司已有100万元资金,并全部投入,两种产品中,其中万元资金投入产品,试把,两种产品利润总和表示为的函数,并写出定义域;
(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
【答案】(1);(2)20,28.
【解析】
(1)设投入产品万元,则投入产品万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.(2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.
(1)其中万元资金投入产品,则剩余的(万元)资金投入产品,
利润总和为: ,
(2)因为,
所以由基本不等式得:,
当且仅当时,即:时获得最大利润28万.
此时投入A产品20万元,B产品80万元.
【点睛】
本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.
【题型】解答题
【结束】
20
【题目】已知曲线.
(1)求曲线在处的切线方程;
(2)若曲线在点处的切线与曲线相切,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com