精英家教网 > 高中数学 > 题目详情

已知点A(2,0),B(0,2),点C(x,y)在单位圆上.

(1)若||=(O为坐标原点),求的夹角;

(2)若,求点C的坐标.

答案:
解析:

  解:(1).且

  由

  由联立解得,  2分

    4分

  所以的夹角的夹角为  6分

  (2),由得,

  由解得  10分

  所以点的坐标为  12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,函数y=2cos(ωx+θ)(x∈R,0≤θ≤
π
2
)
的图象与y轴交于点(0,
3
)
,且在该点处切线的斜率为-2.
(1)求θ和ω的值;
(2)已知点A(
π
2
,0)
,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=
3
2
x0∈[
π
2
,π]
时,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-
2
,0),B(
2
,0)
,P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-
1
2

(Ⅰ)求动点P的轨迹C的方程,并求出曲线C的离心率的值;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)在平面直角坐标系中,点P(x,y)为动点,已知点A(
2
,0)
B(-
2
,0)
,直线PA与PB的斜率之积为-
1
2

(I)求动点P轨迹E的方程;
( II)过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(
2
,0)
,动点M,N满足
OA
+
OM
=2
ON
,其中O是坐标原点,若KAM•K ON=-
1
2

(1)求点M的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个共公点,且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(– 2,0),B(2,0),动点P满足:,且.

(1)求动点P的轨迹G的方程;

(2)过点B的直线l与轨迹G交于两点MN.试问在x轴上是否存在定点C ,使得 为常数.若存在,求出点C的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案