精英家教网 > 高中数学 > 题目详情
(2012•湖南)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
分析:(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD⊥PC;
(2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求SABCD,VP-ABCD
解答:解:(Ⅰ)∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD;
又AC⊥BD,PA,AC是平面PAC内的两条相交直线,
∴BD⊥平面PAC,而PC?平面PAC,∴BD⊥PC;
(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,
∴∠DPO是直线PD和平面PAC所成的角,
∴∠DPO=30°,
由BD⊥平面PAC,PO?平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD.
∵四边形ABCD是等腰梯形,AC⊥BD,
∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为
1
2
AD+
1
2
BC=
1
2
×(4+2)=3,
于是SABCD=
1
2
×(4+2)×3=9.
在等腰三角形AOD中,OD=
2
2
AD=2
2

∴PD=2OD=4
2
,PA=
PD2-AD2
=4,
∴VP-ABCD=
1
3
SABCD×PA=
1
3
×9×4=12.
点评:本题考查直线与平面垂直判定定理与性质性质定理,考查直线与平面所成的角的应用与锥体体积,突出对分析、推理与计算能力的考查与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则
AP
AC
=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为
6.8
6.8

(注:方差s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]
,其中
.
x
为x1,x2,…,xn的平均数)

查看答案和解析>>

同步练习册答案