精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线与直线处相切.

①求的值;

②求证:当时,

2)当时,关于的不等式有解,求实数的取值范围.

【答案】1)①②见解析(2

【解析】

1)①求出导函数,由可求得,再由可求得,从而得;②引入函数,利用导数求函数的最小值(需二次求导确定),确定最小值是,从而证得不等式成立;

(2)不等式分离参数得,原题等价于时,有解.求出的最小值即可得,为此先证明不等式,仍然构造新函数,利用导数研究新函数的单调性与最值得出结论.应用刚证的不等式可得结论.

解:(1)①因为,所以.

因为曲线与直线处相切,

所以,所以.

所以,所以.

又切点在直线上,所以

所以,所以

由①知,可设

时,,当时,

所以上单调递减,在上单调递增,

,所以

所以存在,使得

所以当时,,当时,

所以上单调递增,在上单调递减,在上单调递增.

因为,所以

,当且仅当时取等号,

所以当时,

故当时,

(3)先证. 构造函数,则.

故当时,上递增,当时,上递减,

所以,即

又当,且时,等价于

故原题等价于时,有解.

因为(当时取等号),

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,国家为了鼓励高校毕业生自主创业,出台了许多优惠政策,以创业带动就业.某高校毕业生小李自主创业从事海鲜的批发销售,他每天以每箱300元的价格购入基围虾,然后以每箱500元的价格出售,如果当天购入的基围虾卖不完,剩余的就作垃圾处理.为了对自己的经营状况有更清晰的把握,他记录了150天基围虾的日销售量(单位:箱),制成如图所示的频数分布条形图.

1)若小李一天购进12箱基围虾.

①求当天的利润(单位:元)关于当天的销售量(单位:箱,)的函数解析式;

②以这150天记录的日销售量的频率作为概率,求当天的利润不低于1900元的概率;

2)以上述样本数据作为决策的依据,他计划今后每天购进基围虾的箱数相同,并在进货量为11箱,12箱中选择其一,试帮他确定进货的方案,以使其所获的日平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=Asinωx+B的部分图象如图所示,其中A0ω0|φ|

(Ⅰ)求函数yfx)解析式;

(Ⅱ)求x[0]时,函数yfx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过作斜率为的直线两点,以线段为直径的圆.时,圆的半径为2.

1)求的方程;

2)已知点,对任意的斜率,圆上是否总存在点满足,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由个人依次出场解密,每人限定时间是分钟内,否则派下一个人.个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲次的测试记录,绘制了如下的频率分布直方图.

1)若甲解密成功所需时间的中位数为,求的值,并求出甲在分钟内解密成功的频率;

2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.

求该团队挑战成功的概率;

该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是线段上的动点,以下结论:

平面

③三棱锥,体积不变;

中点时,直线与平面所成角最大.

其中正确的序号为( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某病毒研究所为了研究温度对某种病毒的影响,在温度t(℃)逐渐升高时,连续测20次病毒的活性指标值y,实验数据处理后得到下面的散点图,将第114组数据定为A组,第1520组数据定为B组.

(Ⅰ)某研究员准备直接根据全部20组数据用线性回归模型拟合yt的关系,你认为是否合理?请从统计学的角度简要说明理由.

(Ⅱ)若根据A组数据得到回归模型,根据B组数据得到回归模型,以活性指标值大于5为标准,估计这种病毒适宜生存的温度范围(结果精确到0.1).

(Ⅲ)根据实验数据计算可得:A组中活性指标值的平均数,方差B组中活性指标值的平均数,方差.请根据以上数据计算全部20组活性指标值的平均数和方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线交于M,抛物线C的焦点为F,且.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设点Q是抛物线C上的动点,点DEy轴上,圆内切于三角形,求三角形的面积的最小值.

查看答案和解析>>

同步练习册答案