精英家教网 > 高中数学 > 题目详情

 先阅读下列不等式的证法,再解决后面的问题:已知,求证

   证明:构造函数

因为对一切,恒有≥0,所以≤0,从而得

   (1)若,请写出上述结论的推广式;

   (2)参考上述解法,对你推广的结论加以证明.

 

 

 

 

 

 

【答案】

 【解析】(1)若

求证: ;……………………4分

(2)证明:构造函数                            

  ………………………8分

因为对一切,都有≥0,所以△=≤0,……10分

从而证得: .……12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证a12+a22
1
2

证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22
1
2

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

先阅读下列不等式的证法:
已知a1,a2∈R,a12+a22=1,求证:|a1+a2|≤
2

证明:构造函数f(x)=(x-a12+(x-a22,则f(x)=2x2-2(a1+a2)x+1,因为对一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,故得|a1+a2|≤
2

再解决下列问题:
(1)若a1,a2,a3∈R,a12+a22+a32=1,求证|a1+a2+a3|≤
3

(2)试将上述命题推广到n个实数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

先阅读下列不等式的证法,再解决后面的问题:已知,求证

   证明:构造函数

因为对一切,恒有≥0,所以≤0,从而得

   (1)若,请写出上述结论的推广式;

   (2)参考上述解法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省高二下学期学段考试数学理卷 题型:解答题

(本小题15分)

先阅读下列不等式的证法,再解决后面的问题:已知求证

 证明:构造函数因为对一切,恒有,所以4-8,从而

(1)若,且,请写出上述结论的推广式;

(2)参考上述证法,对你的结论加以证明;

(3)若,求证.[

 

查看答案和解析>>

同步练习册答案