ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+cºÍ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¨abc¡Ù0£©£®
£¨1£©Ö¤Ã÷£ºÖ»Òªa£¼0£¬ÎÞÂÛbÈ¡ºÎÖµ£¬º¯Êýg£¨x£©ÔÚ¶¨ÒåÓòÄÚ²»¿ÉÄÜ×ÜΪÔöº¯Êý£»
£¨2£©ÔÚͬһº¯ÊýͼÏóÉÏÈÎÒâÈ¡²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABÖеãΪC£¨x0£¬y0£©£¬¼ÇÖ±ÏßABµÄбÂÊΪk£¬
¢Ù¶ÔÓÚ¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¬ÇóÖ¤£ºk=f¡ä£¨x0£©£»
¢Ú¶ÔÓÚ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¬ÊÇ·ñÓТÙͬÑùµÄÐÔÖÊ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©Óõ¼º¯Êý´óÓÚ0ÔÚ¶¨ÒåÓòÄÚºã³ÉÁ¢£¬½áºÏ¶þ´Î²»µÈʽºã³ÉÁ¢Öª²»¿ÉÄÜ£¬¾Ýµ¼Êý´óÓÚ0º¯Êýµ¥Ôö£¬µÃÖ¤£®
£¨2£©¢Ù¾ÝÁ½µãбÂʹ«Ê½Çók£¬ÔÙ¾ÝÖеÄ×ø±ê¹«Ê½ºÍµ¼Êý¹«Ê½µÃf¡ä£¨x0£©£¬µÃÖ¤£®
£¨2£©¢ÚÏȼÙÉèÓеõ½Ò»¸ö¹ØÓÚtµÄµÈʽ£¬¹¹Ô캯Êý£¬Ñо¿º¯Êýµ¥µ÷ÐÔÇó×îСֵ£¬µÃµÈʽ²»³ÉÁ¢£¬¹Ê¼ÙÉè²»³ÉÁ¢£®
½â´ð£º½â£º£¨1£©Èç¹ûx£¾0£¬g£¨x£©ÎªÔöº¯Êý£¬Ôò
g¡ä£¨x£©=2ax+b+
c
x
=
2ax2+bx+c
x
£¾0(i)
ºã³ÉÁ¢£®
¡à2ax2+bx+c£¾0£¨ii£©ºã³ÉÁ¢
¡ßa£¼0£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ£¬£¨ii£©²»¿ÉÄܺã³ÉÁ¢
Ôòº¯Êýg£¨x£©²»¿ÉÄÜ×ÜΪÔöº¯Êý£®
£¨2£©¢Ù¶ÔÓÚ¶þ´Îº¯Êý£º
k=
f(x2)-f(x1)
x2- x1
=
a(x22-x12)+b(x2-x1)
x2-x1
=2ax0+b
ÓÉf¡ä£¨x£©=2ax+b¹Êf¡ä£¨x0£©=2ax0+b
¼´k=f¡ä£¨x0£©
£¨2£©¢Ú
²»·ÁÉèx2£¾x1£¬¶ÔÓÚα¶þ´Îº¯Êýg£¨x£©=ax2+bx+clnx=f£¨x£©+clnx-c£¬
k=
g(x2)-g(x1)
x2-x1
=
f(x2)-f(x1)+cln
x2
x1
x2-x1

Èç¹ûÓТٵÄÐÔÖÊ£¬Ôòg¡ä£¨x0£©=k
¡à
cln
x2
x1
x2-x1
=
c
x0
£¬c¡Ù0

¼´¡à
ln
x2
x1
x2-x1
=
2
x1+x2
£¬
Áît=
x2
x1
£¬t£¾1£¬Ôò
lnt
t-1
=
2
t+1

Éès£¨t£©=lnt-
2t-2
t+1
£¬Ôòs¡ä(t)=
1
t
-
2(t+1)-2(t-1)
(t+1)2
=
(t-1)2
t(t+1)2
£¾
0
¡às£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉϵÝÔö£¬
¡às£¨t£©£¾s£¨1£©=0
¡àg¡ä£¨x0£©¡Ùk¡à¡°Î±¶þ´Îº¯Êý¡°g£¨x£©=ax2+bx+clnx²»¾ßÓТٵÄÐÔÖÊ£®
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢º¯ÊýµÄ×îÖµ¡¢Á½µãбÂÊ¡¢²»µÈʽºã³ÉÁ¢ÎÊÌâ¡¢¹¹Ô캯ÊýµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+2£¨m-2£©x+m-m2£®
£¨I£©Èôº¯ÊýµÄͼÏó¾­¹ýÔ­µã£¬ÇÒÂú×ãf£¨2£©=0£¬ÇóʵÊýmµÄÖµ£®
£¨¢ò£©Èôº¯ÊýÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¹ýµã£¨0£¬1£©£¬ÇÒÓëxÖáÓÐΨһµÄ½»µã£¨-1£¬0£©£®
£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©É躯ÊýF£¨x£©=f£¨x£©-kx£¬x¡Ê[-2£¬2]£¬¼Ç´Ëº¯ÊýµÄ×îСֵΪg£¨k£©£¬Çóg£¨k£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2-16x+q+3£®
£¨1£©Èôº¯ÊýÔÚÇø¼ä[-1£¬1]ÉÏ´æÔÚÁãµã£¬ÇóʵÊýqµÄÈ¡Öµ·¶Î§£»
£¨2£©Èô¼ÇÇø¼ä[a£¬b]µÄ³¤¶ÈΪb-a£®ÎÊ£ºÊÇ·ñ´æÔÚ³£Êýt£¨t¡Ý0£©£¬µ±x¡Ê[t£¬10]ʱ£¬f£¨x£©µÄÖµÓòΪÇø¼äD£¬ÇÒDµÄ³¤¶ÈΪ12-t£¿Çë¶ÔÄãËùµÃµÄ½áÂÛ¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ãÖÝһģ£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+ax+m+1£¬¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼£¨2m-1£©x+1-m2µÄ½â¼¯Îª£¨m£¬m+1£©£¬ÆäÖÐmΪ·ÇÁã³£Êý£®Éèg(x)=
f(x)x-1
£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©k£¨k¡ÊR£©ÈçºÎȡֵʱ£¬º¯Êý¦Õ£¨x£©=g£¨x£©-kln£¨x-1£©´æÔÚ¼«Öµµã£¬²¢Çó³ö¼«Öµµã£»
£¨3£©Èôm=1£¬ÇÒx£¾0£¬ÇóÖ¤£º[g£¨x+1£©]n-g£¨xn+1£©¡Ý2n-2£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©µÄͼÏóÓëxÖáµÄÁ½½»µãΪ£¨2£¬0£©£¬£¨5£¬0£©£¬ÇÒf£¨0£©=10£¬Çóf£¨x£©µÄ½âÎöʽ£®
£¨2£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©µÄͼÏóµÄ¶¥µãÊÇ£¨-1£¬2£©£¬ÇÒ¾­¹ýÔ­µã£¬Çóf£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸