ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+cºÍ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¨abc¡Ù0£©£®
£¨1£©Ö¤Ã÷£ºÖ»Òªa£¼0£¬ÎÞÂÛbÈ¡ºÎÖµ£¬º¯Êýg£¨x£©ÔÚ¶¨ÒåÓòÄÚ²»¿ÉÄÜ×ÜΪÔöº¯Êý£»
£¨2£©ÔÚͬһº¯ÊýͼÏóÉÏÈÎÒâÈ¡²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABÖеãΪC£¨x0£¬y0£©£¬¼ÇÖ±ÏßABµÄбÂÊΪk£¬
¢Ù¶ÔÓÚ¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¬ÇóÖ¤£ºk=f¡ä£¨x0£©£»
¢Ú¶ÔÓÚ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¬ÊÇ·ñÓТÙͬÑùµÄÐÔÖÊ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©Óõ¼º¯Êý´óÓÚ0ÔÚ¶¨ÒåÓòÄÚºã³ÉÁ¢£¬½áºÏ¶þ´Î²»µÈʽºã³ÉÁ¢Öª²»¿ÉÄÜ£¬¾Ýµ¼Êý´óÓÚ0º¯Êýµ¥Ôö£¬µÃÖ¤£®
£¨2£©¢Ù¾ÝÁ½µãбÂʹ«Ê½Çók£¬ÔÙ¾ÝÖеÄ×ø±ê¹«Ê½ºÍµ¼Êý¹«Ê½µÃf¡ä£¨x0£©£¬µÃÖ¤£®
£¨2£©¢ÚÏȼÙÉèÓеõ½Ò»¸ö¹ØÓÚtµÄµÈʽ£¬¹¹Ô캯Êý£¬Ñо¿º¯Êýµ¥µ÷ÐÔÇó×îСֵ£¬µÃµÈʽ²»³ÉÁ¢£¬¹Ê¼ÙÉè²»³ÉÁ¢£®
½â´ð£º½â£º£¨1£©Èç¹ûx£¾0£¬g£¨x£©ÎªÔöº¯Êý£¬Ôò
g¡ä£¨x£©=2ax+b+
=
£¾0(i)ºã³ÉÁ¢£®
¡à2ax
2+bx+c£¾0£¨ii£©ºã³ÉÁ¢
¡ßa£¼0£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ£¬£¨ii£©²»¿ÉÄܺã³ÉÁ¢
Ôòº¯Êýg£¨x£©²»¿ÉÄÜ×ÜΪÔöº¯Êý£®
£¨2£©¢Ù¶ÔÓÚ¶þ´Îº¯Êý£º
k=
==2ax
0+b
ÓÉf¡ä£¨x£©=2ax+b¹Êf¡ä£¨x
0£©=2ax
0+b
¼´k=f¡ä£¨x
0£©
£¨2£©¢Ú
²»·ÁÉèx
2£¾x
1£¬¶ÔÓÚα¶þ´Îº¯Êýg£¨x£©=ax
2+bx+clnx=f£¨x£©+clnx-c£¬
k=
=Èç¹ûÓТٵÄÐÔÖÊ£¬Ôòg¡ä£¨x
0£©=k
¡à
=£¬c¡Ù0¼´¡à
=£¬
Áî
t=£¬t£¾1£¬Ôò
=Éès£¨t£©=lnt-
£¬Ôò
s¡ä(t)=-=£¾0
¡às£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉϵÝÔö£¬
¡às£¨t£©£¾s£¨1£©=0
¡àg¡ä£¨x
0£©¡Ùk¡à¡°Î±¶þ´Îº¯Êý¡°g£¨x£©=ax
2+bx+clnx²»¾ßÓТٵÄÐÔÖÊ£®
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢º¯ÊýµÄ×îÖµ¡¢Á½µãбÂÊ¡¢²»µÈʽºã³ÉÁ¢ÎÊÌâ¡¢¹¹Ô캯ÊýµÈ£®