精英家教网 > 高中数学 > 题目详情
已知函数
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[1,4]上的最大与最小值.
【答案】分析:(1)任取x1,x2∈[1,+∞),且x1<x2,然后通过化简变形判定f(x1)-f(x2)的符号,从而得到函数的单调性;
(2)根据(1)知函数f(x)在[1,4]上是增函数,将区间端点代入,从而求出函数最值.
解答:解:(1)任取x1,x2∈[1,+∞),且x1<x2
=
∵x1-x2<0,(x1+1)(x2+1)>0,
所以,f(x1)-f(x2)<0,f(x1)<f(x2),
所以函数f(x)在[1,+∞)上是增函数.
(2)由(1)知函数f(x)在[1,4]上是增函数.
最大值为,最小值为
点评:本题主要考查了利用定义法证明函数的单调性,以及利用单调性求函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数函f(x)=x|x|-2x  (x∈R)
(1)判断函数的奇偶性,并用定义证明;
(2)作出函数f(x)=x|x|-2x的图象;
(3)讨论方程x|x|-2x=a根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
1+x2

(1)由f(2)=
4
5
f(
1
2
)=
1
5
f(3)=
9
10
f(
1
3
)=
1
10
这几个函数值,你能发现f(x)与f(
1
x
)
有什么关系?并证明你的结论;
(2)求f(1)+f(2)+f(3)+…+f(2010)+f(
1
2
)+f(
1
3
)+…+f(
1
2010
)
的值;
(3)判断函数f(x)=
x2
1+x2
在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e|lnx|+a|x-1|(a为实数)
(I)若a=1,判断函数f(x)在区间[1,+∞)上的单调性(不必证明);
(II)若对于任意的x∈(0,1),总有f(x)的函数值不小于1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省江门市开平市高一(上)期末数学试卷(解析版) 题型:解答题

已知函数
(1)由这几个函数值,你能发现f(x)与有什么关系?并证明你的结论;
(2)求的值;
(3)判断函数在区间(0,+∞)上的单调性.

查看答案和解析>>

同步练习册答案