【题目】如图:直线平面,直线平行四边形,四棱锥的顶点在平面上, ,,,, ,,、分别是与的中点.
(Ⅰ)求证:平面 ;
(Ⅱ)求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长。设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
储蓄存款 | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求关于的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女。现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率。
附:回归直线的斜率和截距的最小二乘估计公式分别为:,。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,圆经过椭圆的两个焦点和两个顶点,点在椭圆上,且,.
(Ⅰ)求椭圆的方程和点的坐标;
(Ⅱ)过点的直线与圆相交于、两点,过点与垂直的直线与椭圆相交于另一点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市拟在矩形区域内修建儿童乐园,已知百米,百米,点E,N分别在AD,BC上,梯形为水上乐园;将梯形EABN分成三个活动区域,在上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设,两道栅栏的总长度.
(1)求的函数表达式,并求出函数的定义域;
(2)求的最小值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点分别为和,短轴的两个端点分别为和,点在椭圆上,且满足,当变化时,给出下列三个命题:
①点的轨迹关于轴对称;②的最小值为2;
③存在使得椭圆上满足条件的点仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知:,椭圆:,为椭圆右顶点.过原点且异于坐标轴的直线与椭圆交于,两点,直线与的另一交点为,直线与的另一交点为,其中.设直线,的斜率分别为,.
(Ⅰ)求的值;
(Ⅱ)记直线,的斜率分别为,,是否存在常数,使得?若存在,求值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有17名学生参加某大学组织的夏令营活动,每人至少参加地学、考古、信息科学三科夏令营活动中的一科,已知其中参加地学夏令营活动的有11人,参加考古夏令营活动的有7人,参加信息科学夏令营活动的有9人,同时参加地学和考古夏令营活动的有4人,同时参加地学和信息科学夏令营活动的有5人,同时参加考古和信息科学夏令营活动的有3人,则三科夏令营活动都参加的人数是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com