精英家教网 > 高中数学 > 题目详情

【题目】某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x套玩具的成本p由两部分费用(单位:元)构成:.固定成本(与生产玩具套数x无关),总计一百万元;b.生产所需的直接总成本

1)问:该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?

2)假设每月生产出的玩具能全部售出,但随着x的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x的增大而适当增加.设每套玩具的售价为q元,).若当产量为15000套时利润最大,此时每套售价为300元,试求b的值.(利润=销售收入-成本费用)

【答案】(1)该公司生产1万套玩具时,使得每套平均所需成本费用最少,且每套的成本费用为250元;(2)

【解析】

1)由题意写出生产成本p,利用基本不等式计算的最小值,并且求出对应的x值;

2)利用利润函数,结合题意列方程求得ab的值.

解:(1)由题意知,生产成本为

当且仅当时,即,解得

答:该公司生产1万套玩具时,使得每套平均所需成本费用最少,且每套的成本费用为250元;

2)利润

根据题意,有,且

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额元)、专业二等奖学金(奖金额元)及专业三等奖学金(奖金额元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;

(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?

(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生年获得的专业奖学金额为随机变量,求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,且ESA的中点.

1)求证:平面BED平面SAB

2)求平面BED与平面SBC所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DEF分别是B1C1ABAA1的中点.

(1) 求证:EF∥平面A1BD

(2) A1B1A1C1,求证:平面A1BD⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);

2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,平面平面分别为中点,

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为海里/小时, 当速度为海里/小时时,它的燃料费是每小时元,其余费用(无论速度如何)都是每小时.如果甲乙两地相距海里,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为(

A.海里/小时B.海里/小时

C.海里/小时D.海里/小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

已知在一个极坐标系中点的极坐标为

1)求出以为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形.

2)在直角坐标系中,以圆所在极坐标系的极点为原点,极轴为轴的正半轴建立直角坐标系,点是圆上任意一点, 是线段的中点,当点在圆上运动时,求点的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=

(1)m=4时,求函数f(x)的定义域M;

(2)a,b∈RM时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

同步练习册答案