精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是正方形,侧面底面分别为中点,
(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

(Ⅰ)详见解析,(Ⅱ)(Ⅲ)不存在.

解析试题分析:(Ⅰ)证明线面平行,关键在于找出线线平行.本题条件含中点,故从中位线上找线线平行. 分别为中点,在△中,中点,中点,所以.又因为平面平面,所以∥平面.(Ⅱ)求二面角的大小,有两个思路,一是作出二面角的平面角,这要用到三垂线定理及其逆定理,利用侧面底面,可得底面的垂线,再作DF的垂线,就可得二面角的平面角,二是利用空间向量求出大小.首先建立空间坐标系. 取中点.由侧面底面易得.以为原点,分别为轴建立空间直角坐标系.再利用两平面法向量的夹角与二面角的平面角的关系,求出结果,(Ⅲ)存在性问题,一般从假设存在出发,构造等量关系,将存在是否转化为方程是否有解.

证明:(Ⅰ)如图,连结
因为底面是正方形,
所以互相平分.
又因为中点,
所以中点.
在△中,中点,中点,
所以
又因为平面平面
所以∥平面.                                        4分
(Ⅱ)取中点.在△中,因为
所以
因为面底面
且面
所以
因为平面
所以
又因为中点,
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直四棱柱的底面为正方形,为棱的中点.

(1)求证:
(2)设中点,为棱上一点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,  
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,,且
现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.

(1)求证:∥平面;
(2)求证:;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,.若的中点,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,,斜边可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.

(1)求证:平面平面
(2)求与平面所成角的最大角的正切值.

查看答案和解析>>

同步练习册答案