精英家教网 > 高中数学 > 题目详情
16.已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).根据数列的首项和递推公式,写出它的前五项并归纳出通项公式.

分析 由条件得a1=0,a2=12,a3=22,a4=32,a5=42归纳通项公式.

解答 解:由条件得a1=0,a2=0+1=1=12
a3=1+(2×2-1)=4=22
a4=4+(2×3-1)=9=32
a5=9+(2×4-1)=16=42
归纳通项公式为an=(n-1)2

点评 本题考查观察法求通项公式,解题时要认真观察,寻找规律,归纳方法,注意培养总结能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C的对边分别为a、b、c,若$\frac{a}{b}$+$\frac{2b}{a}$=3cosC,则$\frac{sin(A-B)}{sinC}$的值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),则最大角的余弦值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较下列各组两个式子的大小:
(1)(x-2)2和1-4x;
(2)(x-1)(x+5)和(x+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={a|loga$\frac{3}{4}$<1,a>0且a≠1},B={α|sinα+$\sqrt{3}$cosα>1,α∈(0,π)},
(1)求A∩B;
(2)求A∩∁RB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$,求:
(1)f($\frac{π}{4}$)的值;
(2)函数f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinx=2cosx,则$\frac{si{n}^{2}x}{1+co{s}^{2}x}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=$\sqrt{3}$,且|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则$\overrightarrow{a}$•$\overrightarrow{b}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={x|0<x2-x-2≤10},集合$B=\{x|\frac{1}{x+2}>0\}$,求A∩B.

查看答案和解析>>

同步练习册答案