【题目】已知,设函数,.
(1)求函数的单调区间;
(2)是否存在整数,对于任意,关于的方程在区间上有唯一实数解?若存在,求的值;若不存在,说明理由.
【答案】(1)当时,单调递减区间是,当时,单调递减区间是和,单调递增区间是
(2)存在,
【解析】
(1)根据题意单调,求导,令,分,两者情况讨论求解.
(2)先求时,的根,得到区间,当时,求导 ,讨论,时,,当且,利用等比数列求和公式得到,分析得,得到在R上是减函数,再论证,,利用零点存在定理得到结论.
(1)因为,
所以,,
令,
,
当时,,,所以在R上单调递减,
当时,,方程有两个不等根,
当时,,当时,,当时,,
所以在递减,在上递增.
综上:当时,的减区间是,
当时, 的减区间是,,增区间是.
(2)存在,对于任意,关于的方程在区间上有唯一实数解,理由如下:
当时,,令,解得,
所以关于的方程有唯一实数解.
当时,,,
若,则,
若,,
若且,,当时,,所以
当时,,所以,
故在R上是减函数.
又,
,
,
,
所以方程在区间上有唯一实数解.
综上:对于任意,关于的方程在区间上有唯一实数解,所以.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,上顶点为A,过的直线与y轴交于点M,满足(O为坐标原点),且直线l与直线之间的距离为.
(1)求椭圆C的方程;
(2)在直线上是否存在点P,满足?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线过焦点且与抛物线交于、两点,当直线的倾斜角为30°时,.
(1)求抛物线方程.
(2)在平面直角坐标系中,是否存在定点,当直线绕旋转时始终都满足平分.若存在,求出的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,
,圆与椭圆在第一象限交于点,在第二象限交于点.
(1)求椭圆的方程;
(2)求的最小值,并求出此时圆的方程;
(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌滴沥之,自钱孔入,而钱不湿.已知铜钱是直径为4 cm的圆面,中间有边长为1 cm的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2 cm的球)正好落入孔中的概率是_____.(不作近似计算)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,②,③这三个条件中任选一个,补充在下面的问题中,并解决该问题.
已知的内角,,的对边分别为,,______________,,,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )
①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com