精英家教网 > 高中数学 > 题目详情

函数y=f(x)的定义域为(-∞,+∞),且具有以下性质:①f(-x)-f(x)=0;②f(x+2)•f(x)=1;③y=f(x)在[0,2]上为单调增函数,则对于下述命题:
(1)y=f(x)的图象关于原点对称
(2)y=f(x)为周期函数且最小正周期是4
(3)y=f(x)在区间[2,4]上是减函数
正确命题的个数为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
分析:由①得f(x)为偶函数,即函数图象关于y轴对称故(1)错;由②求出函数的最小正周期为4,故(2)对;再结合③判断出(3)对.
解答:由题意知f(-x)=f(x),则f(x)为偶函数,即函数图象关于y轴对称.
由②得:f(x+2)=,∴f(x+4)==f(x),则f(x)为周期函数且T=4.
∵y=f(x)在[0,2]递增,∴f(x)在[-2,0]递减,
∵f(x)为周期函数且T=4,∴f(x)在[2,4]递减,
由此可知(2)(3)正确,(1)不正确.
故选C.
点评:本题主要考查了函数的奇偶性、单调性和周期性的综合运用,考查了学生对函数性质的运用能力和对式子的变形能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装批发商场经营的某种服装,进货成本40元/件,对外批发价定为60元/件.该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,再降低0.1元/件,但最低价不低于50元/件.
(1)问一次购买多少件时,售价恰好是50元/件?
(2)设购买者一次购买x件,商场的利润为y元(利润=销售总额-成本),试写出函数y=f(x)的表达式.并说明在售价高于50元/件时,购买者一次购买多少件,商场利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装批发商场经营的某种服装,进货成本40元/件,对外批发价定为60元/件.该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,再降低0.1元/件,但最低价不低于50元/件.
(Ⅰ)问一次购买150件时,每件商品售价是多少?
(Ⅱ)问一次购买200件时,每件商品售价是多少?
(Ⅲ)设购买者一次购买x件,商场的售价为y元,试写出函数y=f(x)的表达式.

查看答案和解析>>

同步练习册答案