精英家教网 > 高中数学 > 题目详情
10.设△ABC的内角A,B,C所对的边分别是a,b,c,且$\frac{a}{b}$cosC+$\frac{c}{2b}$=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

分析 (I)利用正弦定理、和差化积即可得出;
(II)利用正弦定理、和差化积、三角函数的单调性即可得出.

解答 解:(Ⅰ)由已知得$\frac{a}{b}$cosC+$\frac{c}{2b}$=1.
即sinAcosC+$\frac{1}{2}$sinC=sinB,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴$\frac{1}{2}$sinC=cosAsinC.
∵sinC≠0,
∴cosA=$\frac{1}{2}$.
又∵A∈(0,π),∴$A=\frac{π}{3}$.
(Ⅱ)由正弦定理得$b=\frac{asinB}{sinA}$=$\frac{2}{\sqrt{3}}$sinB,c=$\frac{2}{\sqrt{3}}$sinC,
∴l=a+b+c=1+$\frac{2}{\sqrt{3}}$sinB+$\frac{2}{\sqrt{3}}$sinC=1+$\frac{2}{\sqrt{3}}$[sinB+sin(A+B)]
=1+2$sin(B+\frac{π}{6})$.
∵A=$\frac{π}{3}$,
∴B∈$(0,\frac{2π}{3})$,$B+\frac{π}{6}$∈$(\frac{π}{6},\frac{5π}{6})$,
∴sin$(B+\frac{π}{6})$∈$(\frac{1}{2},1]$.
故△ABC的周长l的取值范围是(2,3].

点评 本题考查了正弦定理、和差化积、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和Sn=10n-n2,数列{bn}的每一项都有bn=|an|,则数列{bn}的前10项和T10=50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$|{\overrightarrow{\;a\;}}|=3$,$|{\overrightarrow{\;b\;}}|=4$,
(1)若$({\overrightarrow{\;a\;}+2\overrightarrow{\;b\;}})•({2\overrightarrow{\;a\;}-\overrightarrow{\;b\;}})=-20$,求$\overrightarrow{\;a\;}$与$\overrightarrow{\;b\;}$的夹角;
(2)若$\overrightarrow{\;a\;}$与$\overrightarrow{\;b\;}$的夹角为60°,试确定实数k,使$k\overrightarrow{\;a\;}+\overrightarrow{\;b\;}$与$\overrightarrow{\;a\;}-\overrightarrow{\;b\;}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:
女生:
睡眠时间(小时)[4,5)[5,6)[6,7)[7,8)[8,9]
人数24842
男生:
睡眠时间(小时)[4,5)[5,6)[6,7)[7,8)[8,9]
人数15653
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取2人,求此2人中恰有一人为“严重睡眠不足”的概率;
(2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
睡眠时间少于7小时睡眠时间不少于7小时合计
男生
女生
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数字1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为36.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=(x+a)(|x-a+1|+|x-3|)-2x+4a的图象是中心对称图形,则实数a的值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是等差数列,且S3=6,a3=0,则它的公差d=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一个直角边长为10m的等腰直角三角形ABC的草地上,铺设一个也是等腰直角三角形PQR的花地,要求P,Q,R三点分别在△ABC的三条边上,且要使△PQR的面积最小,现有两种设计方案:
方案-:直角顶点Q在斜边AB上,R,P分别在直角边AC,BC上;
方案二:直角顶点Q在直角边BC上,R,P分别在直角边AC,斜边AB上.请问应选用哪一种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=($\frac{1}{2}$)x;②f(x)的图象关于直线x=1对称,则f(-log224)=$-\frac{2}{3}$.

查看答案和解析>>

同步练习册答案