分析 (1)根据已知利用余弦定理可求cosA=$\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(2)利用两角和与差的正弦函数公式化简可得解析式f(x)=sin(x+$\frac{π}{3}$),利用正弦函数的性质可求最大值.
解答 (本小题满分12分)
解析:(1)∵b2+c2=a2+bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
又∵A∈(0,π),
∴A=$\frac{π}{3}$; …(6分)
(2)f(x)=sin(x-$\frac{π}{3}$)+$\sqrt{3}$cosx
=$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx+$\sqrt{3}$cosx
=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx
=sin(x+$\frac{π}{3}$),…(10分)
∴f(x)max=1. …(12分)
点评 本题主要考查了余弦定理,两角和与差的正弦函数公式,正弦函数的图象和性质的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | $-\frac{1}{e}$ | C. | 0 | D. | e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com