精英家教网 > 高中数学 > 题目详情
5.已知定义在R上的函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是奇函数.
(1)求a,b的值;
(2)判断其单调性并加以证明;
(3)若对任意的t∈[-1,3],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

分析 (1)根据定义在R上的函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是奇函数.可得函数满足f(0)=0,f(-1)=-f(1),可求a,b的值;
(2)分离后利用对数的单调性即可证明;
(3)根据函数是奇函数以及函数的单调性化简,分离参数,可求k的取值范围.

解答 解:由题意,∵函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是在R上奇函数,
∴f(0)=0,即b-1=0,可得:b=1
∵f(-1)=-f(1),
可得$\frac{1-4}{a+4}=-\frac{1-\frac{1}{4}}{a+\frac{1}{4}}$,
解得:a=1,
故得f(x)=$\frac{1-{4}^{x}}{1+{4}^{x}}$.
那么f(-x)=$\frac{1-\frac{1}{{4}^{x}}}{1+\frac{1}{{4}^{x}}}=\frac{{4}^{x}-1}{{4}^{x}+1}=-f(x)$.
故a,b的值均为1.
(2)由(1)可得f(x)=$\frac{1-{4}^{x}}{1+{4}^{x}}$=$\frac{-({4}^{x}+1)+2}{{4}^{x}+1}=-1+\frac{2}{{4}^{x}+1}$,
∵y=4x+1是增函数,
故而函数y=$\frac{2}{{4}^{x}+1}$是减函数,
∴函数f(x)在定义域内是减函数.
(3)由(1)(2)可知函数f(x)在定义域内是减函数,又是奇函数,
∴不等式f(t2-2t)+f(2t2-k)<0转化为t2-2t>k-2t2在t∈[-1,3]恒成立;
可得:3t2-2t>k,
令y=3t2-2t,(-1≤t≤3)
开口向上,对称轴t=$\frac{1}{3}$,
故而ymin=$3×\frac{1}{9}-\frac{2}{3}$=$-\frac{1}{3}$.
∴对任意的t∈[-1,3],不等式f(t2-2t)+f(2t2-k)<0恒成立,k的取值范围是(-∞,$-\frac{1}{3}$).

点评 本题主要考查了函数的奇偶性和单调性的运用能力来解决含参数的恒成立问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=3sin(2x-$\frac{π}{4}$),则下列结论正确的是(  )
A.若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z)
B.函数f(x)的图象关于(-$\frac{π}{8}$,0)对称
C.函数f(x)的图象与g(x)=3cos(2x+$\frac{π}{4}$)的图象相同
D.函数f(x)在[-$\frac{1}{8}$π,$\frac{3}{8}$π]上递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知tan(-α)=3,则$\frac{{{{sin}^2}α-sin2α}}{cos2α}$等于(  )
A.-$\frac{8}{3}$B.$\frac{8}{3}$C.-$\frac{15}{8}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合I={x∈Z|-3<x<3},A={-2,0,1},B={-1,0,1,2},则(∁IA)∩B等于(  )
A.{-1}B.{2}C.{-1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点,$\overrightarrow{AM}$与$\overrightarrow{CN}$交于点P且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=1的切线与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于两点A,B,分别以A,B为切点的$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的切线交于点P,则点P的轨迹方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x+$\frac{1}{2x}$,x∈($\frac{1}{2}$,2),若f(x)-m>0对一切x∈($\frac{1}{2}$,2)恒成立,则实数m的取值范围为(  )
A.(-∞,$\frac{\sqrt{2}}{2}$)B.(-∞,$\sqrt{2}$)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,$\frac{9}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某电影公司2012年大陆电影票房为21亿元,若该公司大陆电影票房的年平均增长率为x,2016年大陆电影票房为y亿元,则y与x的函数关系式为(  )
A.y=84xB.y=21(1+4x)C.y=21x4D.y=21(1+x)4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若对于任意正数x,y,都有f(xy)=f(x)+f(y),且f(8)=-3,则$f(a)=\frac{1}{2}$时,正数a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案