精英家教网 > 高中数学 > 题目详情
14.(1)用列举法表示集合A={x|x2-3x+2=0};
(2)用描述法表示“比-2大,且比1小的所有实数”组成的集合B;
(3)用另一种方法表示集合C={(x,y)|x+y=5,x∈N,y∈N}.

分析 根据集合的表示方法 表示出相对应的集合即可.

解答 解:(1)用列举法表示集合A={x|x2-3x+2=0}={1,2};
(2)用描述法表示“比-2大,且比1小的所有实数”组成的集合B,
∴B={-2<x<1,x∈R};
(3)用另一种方法表示集合C={(x,y)|x+y=5,x∈N,y∈N},
∴C={(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}.

点评 本题考查了集合的表示方法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数 f(x)=sin(x+φ)-2sinφcosx的值域是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{b}$可以为(  )
A.(1,2)B.(1,-2)C.(2,1)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下题:
①f(x)在[1,3]上的图象时连续不断的  
②f(x)在[1,$\sqrt{3}$]上具有性质P
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]
④对任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A=$\{x|y=\sqrt{{x^2}-x-6}\}$,集合B=$\{x|x=lo{g_{\frac{1}{2}}}a,a>1\}$,则(∁RA)∩B=(  )
A.{x|-3≤x<0}B.{x|-2≤x<0}C.{x|-3<x<0}D.{x|-2<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a为常数,若曲线y=ax2+3x-lnx存在与直线x+y-1=0垂直的切线,则实数a的取值范围是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出5个函数:(1)y=3x-1,(2)y=x2+ax+b,(3)y=-2x,(4)y=-log2x,$(5)y=\sqrt{x}$.这些函数中满足:对定义域内任意的x1,x2min,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$成立的函数的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在锐角三角形ABC中,下列结论正确的是(  )
A.sinA>sinBB.cosA>cosBC.sinA>cosBD.cosA>sinB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),ω>0,若f(x)的图象上相邻两个对称中心的距离大于等于π.
(1)求ω的取值范围;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{3}$,当ω最大时,f(2A)=1,若向量$\overrightarrow{m}$=(1,sinB)与向量$\overrightarrow{n}$=(2,sinC)共线,求b,c的值.

查看答案和解析>>

同步练习册答案