精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知为椭圆的上顶点,P为椭圆E上异于上、下顶点的一个动点.当点P的横坐标为时,

1)求椭圆E的标准方程;

2)设Mx轴的正半轴上的一个动点.

①若点P在第一象限内,且以AP为直径的圆恰好与x轴相切于点M,求AP的长.

②若,是否存在点N,满足,且AN的中点恰好在椭圆E上?若存在,求点N的坐标;若不存在,请说明理由.

【答案】1;(2)①;②存在点满足题意.

【解析】

1)根据题意可知,可求出P点坐标,代入方程求出即可;

2)①设,则可表示出圆心坐标可设为,根据圆的性质及点P在椭圆上列出方程组求解即可;

②设,根据 AN的中点恰好在椭圆E上,且得到点坐标,即可求解.

1)因为是椭圆E的上顶点,所以

当点P的横坐标为时,

,则,解得

所以椭圆E的标准方程为

2)①设,则以AP为直径的圆的圆心坐标可设为

又因为,所以

因为,所以

因为点P在椭圆E上,所以

联立解得(负值舍去),

所以

②设

因为

所以

解得

所以AN的中点坐标为

因为AN的中点在椭圆E上,

所以.(*

因为,所以

因为点P在椭圆E上,

所以,(**

联立消去

又因为,所以

代入(*)式和(**)式得

消去m

又因为.所以

代入(**)式和

解得(负值舍去),

综上,存在点,满足

AN的中点恰好在椭圆E上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若过点,证明:

2)若,点在曲线上,的中点均在抛物线上,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,且(其中为坐标原点),若椭圆的离心率满足,则椭圆长轴的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为正方形上异于点的动点,将沿翻折成,在翻折过程中,下列说法正确的是(

A.存在点和某一翻折位置,使得

B.存在点和某一翻折位置,使得平面

C.存在点和某一翻折位置,使得直线与平面所成的角为45°

D.存在点和某一翻折位置,使得二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线的焦点且与轴垂直的直线与抛物线在第一象限交于点的面积为,其中为坐标原点.

1)求抛物线的标准方程;

2)若为抛物线上的两个不同的点,直线的斜率分别为,且,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称A蔬菜),购入价为200/袋,并以300/袋的价格售出,若前8小时内所购进的A蔬菜没有售完,则批发商将没售完的A蔬菜以150/袋的价格低价处理完毕(根据经验,2小时内完全能够把A蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100A蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

1)若某天该蔬菜批发商共购入6A蔬菜,有4A蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150/袋的价格购买的概率是多少?

2)若今年A蔬菜上市的100天内,该蔬菜批发商每天都购进A蔬菜5袋或者每天都购进A蔬菜6袋,估计这100天的平均利润,以此作为决策依据,该蔬菜批发商应选择哪一种A蔬菜的进货方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论上的单调性;

2)当时,若存在正实数,使得对,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某总公司在AB两地分别有甲、乙两个下属公司同种新能源产品(这两个公司每天都固定生产50件产品),所生产的产品均在本地销售.产品进人市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进人市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如表所示:

1

甲公司

得分

[5060

[6070

[7080

[8090

[90100]

件数

10

10

40

40

50

天数

10

10

10

10

80

2

甲公司

得分

[5060

[6070

[7080

[8090

[90100]

件数

10

5

40

45

50

天数

20

10

20

10

70

3

每件正品

每件次品

甲公司

2万元

3万元

乙公司

3万元

3.5万元

1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示).

2)试问甲、乙两个公司这100天生产的产品的总利润哪个更大?说明理由.

3)若以甲公司这100天中每天产品利润总和对应的频率作为概率,从甲公司这100天随机抽取1天,记这天产品利润总和为X,求X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.

1)求甲、乙、丙三人投篮的命中率;

2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案