精英家教网 > 高中数学 > 题目详情

已知函数f(x)满足:对任意正数x1<x2,有f(x1)>f(x2),且f(x1•x2)=f(x1)+f(x2).请写出一个满足条件的函数,则这个函数可以写为f(x)=________(注:只需写出一个函数即可).

lgx
分析:先利用单调性的定义判断函数为(0,+∞)上的增函数,再由运算性质f(x1•x2)=f(x1)+f(x2)可判断函数可为对数函数,故只要写一个对数增函数即可
解答:由条件“对任意正数x1<x2,有f(x1)>f(x2)”知此函数为(0,+∞)上的增函数
又由条件“f(x1•x2)=f(x1)+f(x2)”,可知此此性质可为对数函数性质lg(x1•x2)=lg(x1)+lg(x2).
故此函数可以为f(x)=lgx
故答案为 lgx
点评:本题考查了抽象函数表达式反映函数性质的意义和应用,对数函数的性质和对数运算的性质,类比推理的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案