精英家教网 > 高中数学 > 题目详情

【题目】已知| |=4,| |=2,且 夹角为120°求:
(1)( ﹣2 )( + );
(2) 上的投影;
(3) + 的夹角.

【答案】
(1)解:∵| |=4,| |=2,且 夹角为120°,

=| || |cos120°=4×2×(﹣ )=﹣4,

﹣2 )( + )=| |2﹣2| |2 =16﹣8+4=12


(2)解: 上的投影为| |cos120°=﹣2
(3)解: + )=| |2+ =16﹣4=12,

| + |2=| |2+| |2+2 =16+4﹣8=12,

∴| + |=2

∴cos< + >= = =

+ 的夹角为


【解析】(1)根据向量的数量积公式计算即可,(2)根据投影的定义即可求出,(3)根据向量的夹角公式计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线AC1交平面CB1D1于点M,则下列结论正确的是(

A.C,M,O三点共线
B.C,M,O,A1不共面
C.A,M,O,C不共面
D.B,M,O,B1共面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为A,函数y=log2(a﹣x)的定义域为B.
(1)若AB,求实数a的取值范围;
(2)设全集为R,若非空集合(RB)∩A的元素中有且只有一个是整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,前项和.

(1)求的取值范围;

(2)设,记的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(3)设函数g(x)=﹣ax2+8(x﹣1)afx﹣5,a≥8时,存在最大实数t,使得x∈(1,t]时﹣5≤g(x)≤5恒成立,请写出t与a的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y= 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点且离心率.

1)求椭圆的方程;

(2)若直线与椭圆交于不同的两点且线段的垂直平分线过定点的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′﹣BCDE体积的最大值为
其中正确的是(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

同步练习册答案