【题目】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数____;____.
【答案】70 40
【解析】
根据990不能被13整除,得两个部门人数之和:a+b≥51,然后结合门票价格和人数之间的关系,建立方程组进行求解即可.
∵990不能被13整除,∴两个部门人数之和:a+b≥51,
(1)若51≤a+b≤100,则11 (a+b)=990得:a+b=90,①
由共需支付门票费为1290元可知,11a+13b=1290 ②
解①②得:b=150,a=﹣60,不符合题意.
(2)若a+b≥100,则9 (a+b)=990,得 a+b=110 ③
由共需支付门票费为1290元可知,1≤a≤50,51≤b≤100,
得11a+13b=1290 ④,
解③④得:a=70人,b=40人,
故答案为:70,40.
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.
(1)求A;
(2)若△ABC的面积S=c2,求sin C的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,在轴截得的弦长为2.
(1)求动圆圆心的轨迹的方程;
(2)若为轨迹上一动点,过点作圆的两条切线分别交轴于,两点,求面积的最小值,并求出此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,梯形与平行四边形所在平面互相垂直, ,,,,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使得平面平面?若存在,求 出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=15,O为AB上一点,且BO=10,线段OC、OD、MN为表演队列所在位置(M、N分别在线段OD、OC上),△OCD内的点P为领队位置,且P到OC、OD的距离分别为、,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
(1)当d为何值时,P为队列MN的中点;
(2)怎样安排M的位置才能使观赏效果最好?求出此时△OMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)求函数的对称轴方程;
(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角A,B,C的对边,a=2,c=4,且,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com