精英家教网 > 高中数学 > 题目详情
8.若关于x的不等式ln(1+x)≥$\frac{ax}{1+x}$恒成立,求参数a的范围.

分析 若不等式ln(1+x)≥$\frac{ax}{1+x}$恒成立,f(x)=(1+x)ln(1+x)≥ax恒成立,利用导数法分析函数的图象和性质,数形结合可得答案.

解答 解:若不等式ln(1+x)≥$\frac{ax}{1+x}$恒成立,
f(x)=(1+x)ln(1+x)≥ax恒成立,
∵f′(x)=ln(1+x)+1=0时,x=$\frac{1}{e}$-1,
当x∈(-1,$\frac{1}{e}$-1)时,f′(x)<0,函数为减函数,
当x∈($\frac{1}{e}$-1,+∞)时,f′(x)>0,函数为增函数,
故f(x)的图象如下图所示:

又由直线y=ax的图象过原点,f′(0)=1
故当a=1时,f(x)=(1+x)ln(1+x)≥ax恒成立,
即不等式ln(1+x)≥$\frac{ax}{1+x}$恒成立.

点评 本题考查的知识点是恒成立问题,数形结合思想,导数法分析函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$\sqrt{3}$cosx+sinx(x∈R)的图象向右平移m(m>0)个单位长度后,得到函数g(x)=$\sqrt{3}$sinx+cosx(x∈R)的图象,则m的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=(x-1)0,g(x)=1
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{{x}^{2}}$,g(t)=|t|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知AB=1,C=50°,当B=40°时,BC的长取最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2sin(ωx+φ)其中x∈R,ω>0,-π<φ<π)的部分图象如图所示,则函数f(x)的解析式是$f(x)=2sin(2x+\frac{2π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,则f(3)的取值范围[-1,20].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设0<a<1,在下列四个不等式中,正确的是(  )
A.(1-a)a>(1+a)aB.log1-a(1+a)<0C.(1-a)1+a>1D.${(1-a)}^{\frac{1}{a}}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线上的点到点F1(0,-5),F2(0,5)的距离之差的绝对值是6,求曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.观察下列三角形数表:
第一行                      1
第二行                    2   2
第三行                  3   4    3
第四行                 4  7    7    4
第五行               5  11  14    11   5

假设n行的第二个数为an(n≥2,n∈N*).
(1)依次写出第八行的所有数字;
(2)归纳出an+1与an之间的关系式,并求出an的通项公式.

查看答案和解析>>

同步练习册答案