¸½¼ÓÌâ±Ø×öÌâ
  ÉènÊǸø¶¨µÄÕýÕûÊý£¬ÓÐÐòÊý×飨a1£¬a2£¬¡­£¬a2n£©Í¬Ê±Âú×ãÏÂÁÐÌõ¼þ£º
¢Ùai¡Ê{1£¬-1}£¬i=1£¬2£¬¡­£¬2n£»    ¢Ú¶ÔÈÎÒâµÄ1¡Ük¡Ül¡Ün£¬¶¼ÓÐ|
2li=2k-1
ai|¡Ü2
£®
£¨1£©¼ÇAnΪÂú×ã¡°¶ÔÈÎÒâµÄ1¡Ük¡Ün£¬¶¼ÓÐa2k-1+a2k=0¡±µÄÓÐÐòÊý×飨a1£¬a2£¬¡­£¬a2n£©µÄ¸öÊý£¬ÇóAn£»
£¨2£©¼ÇBnΪÂú×ã¡°´æÔÚ1¡Ük¡Ün£¬Ê¹µÃa2k-1+a2k¡Ù0¡±µÄÓÐÐòÊý×飨a1£¬a2£¬¡­£¬a2n£©µÄ¸öÊý£¬ÇóBn£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬¶ÔÈÎÒâµÄ1¡Ük¡Ün£¬¶¼ÓÐa2k-1+a2k=0£¬Ôòa2k-1¡¢a2k±ØΪ1¡¢-1»ò-1¡¢1£¬ÓÐÁ½ÖÖÇé¿ö£¬ÓÉ·Ö²½¼ÆÊýÔ­Àí£¬¼ÆËã¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝÌâÒ⣬·ÖÎö¿ÉµÃ£¬Èô1¡Ük¡Ün£¬Ê¹µÃa2k-1+a2k¡Ù0£¬ÔòËùÒÔa2k-1+a2k=2»òa2k-1+a2k=-2£¬½ø¶øÉèËùÓÐÕâÑùµÄkΪk1£¬k2£¬¡­km£¨1¡Üm¡Ün£©£¬½ø¶ø·ÖÎö¿ÉµÃa2kj-1+a2kjµÄÖµÓÉa2k1-1+a2k1µÄÖµ£¨2»ò-2£©È·¶¨£¬ÓÖÓÉÆäÓàµÄ£¨n-m£©¶ÔÏàÁÚµÄÊýÿ¶ÔµÄºÍ¾ùΪ0£¬Ôò¿ÉµÃBn=2Cn1¡Á2n-1+2Cn2¡Á2n-2+¡­+2Cnn£¬¼ÆËã¿ÉµÃ´ð°¸£®
½â´ð£º½â£¨1£©ÒòΪ¶ÔÈÎÒâµÄ1¡Ük¡Ün£¬¶¼ÓÐa2k-1+a2k=0£¬Ôòa2k-1¡¢a2k±ØΪ1¡¢-1»ò-1¡¢1£¬ÓÐÁ½ÖÖÇé¿ö£¬
ÓÐÐòÊý×飨a1£¬a2£¬¡­£¬a2n£©ÖÐÓÐn×éa2k-1¡¢a2k
ËùÒÔ£¬An=
2¡Á2¡Á¡­¡Á2
n¸ö2Ïà³Ë
=2n
£»    
£¨2£©ÒòΪ´æÔÚ1¡Ük¡Ün£¬Ê¹µÃa2k-1+a2k¡Ù0£¬
ËùÒÔa2k-1+a2k=2»òa2k-1+a2k=-2£¬
ÉèËùÓÐÕâÑùµÄkΪk1£¬k2£¬¡­km£¨1¡Üm¡Ün£©£¬
²»·ÁÉèa2kj-1+a2kj=2(1¡Üj¡Üm)£¬Ôòa2kj+1-1+a2kj+1=-2£¨·ñÔò|
2kj+1
i=2kj-1
ai|=4£¾2
£©£»
ͬÀí£¬Èôa2kj-1+a2kj=-2(1¡Üj¡Üm)£¬Ôòa2kj+1-1+a2kj+1=2£¬
Õâ˵Ã÷a2kj-1+a2kjµÄÖµÓÉa2k1-1+a2k1µÄÖµ£¨2»ò-2£©È·¶¨£¬
ÓÖÆäÓàµÄ£¨n-m£©¶ÔÏàÁÚµÄÊýÿ¶ÔµÄºÍ¾ùΪ0£¬
ËùÒÔ£¬Bn=2Cn1¡Á2n-1+2Cn2¡Á2n-2+¡­+2Cnn=2£¨2n+Cn1¡Á2n-1+Cn2¡Á2n-2+¡­+Cnn£©-2¡Á2n=2£¨1+2£©n-2¡Á2n=2£¨3n-2n£©£®
µãÆÀ£º±¾ÌâÊÇж¨ÒåµÄÌâÐÍ£¬¹Ø¼üÊÇÕýÈ·Àí½âÌâÒâÖÐж¨ÒåµÄ¶¨Ò壬½ô¿ÛÆ䶨Òå·ÖÎö¡¢½âÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

ͬ²½Á·Ï°²á´ð°¸