精英家教网 > 高中数学 > 题目详情
已知平面上动点P(x,y)满足约束条件
x-y+1≤0
x+y-5≤0
x≥1
,则动点P运动形成轨迹图形的面积为
1
1
分析:画出约束条件
x-y+1≤0
x+y-5≤0
x≥1
表示的可行域,是一个三角形,然后求出可行域的面积即可.
解答:解:因为实数x、y满足约束条件
x-y+1≤0
x+y-5≤0
x≥1

所以它表示的可行域为图中阴影部分,是一个三角形ABC,
其中A(1,4),B(1,2),C(2,2)
则其围成的平面区域的面积为:
1
2
×2×1=1

故答案为:1.
点评:本题考查线性规划,可行域不是的图形的面积的求法,正确画出可行域是解题的关键,考查计算能力、作图能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M(0,1)N(0,-1),平面上动点P(x,y)满足|
NM
|•|
MP
|+
MN
NP
=0

(Ⅰ)求动点P(x,y)的轨迹C的方程;
(Ⅱ)设Q(0,m),R(0,-m)(m≠0)是y轴上两点,过Q作直线与曲线C交于A、B两点,试证:直线RA、RB与y轴所成的锐角相等;
(Ⅲ).在Ⅱ的条件中,若m<0,直线AB的斜率为1,求△RAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(2,0)、N(-2,0),平面上动点P满足由|
MN
|•|
MP
|+
MN
MP
= 0

(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)已知平面内一动点 P到定点F(0,
1
2
)
的距离等于它到定直线y=-
1
2
的距离,又已知点 O(0,0),M(0,1).
(1)求动点 P的轨迹C的方程;
(2)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,以 M P为直径作圆,求该圆截直线y=
1
2
所得的弦长;
(3)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,过点 P作x轴的垂线交x轴于点 A,过点 P作(1)中的轨迹C的切线l交x轴于点 B,问:是否总有 P B平分∠A PF?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>

科目:高中数学 来源:2010年北京市顺义区高考数学二模试卷(理科)(解析版) 题型:解答题

已知两点M(0,1)N(0,-1),平面上动点P(x,y)满足
(Ⅰ)求动点P(x,y)的轨迹C的方程;
(Ⅱ)设Q(0,m),R(0,-m)(m≠0)是y轴上两点,过Q作直线与曲线C交于A、B两点,试证:直线RA、RB与y轴所成的锐角相等;
(Ⅲ).在Ⅱ的条件中,若m<0,直线AB的斜率为1,求△RAB面积的最大值.

查看答案和解析>>

同步练习册答案