精英家教网 > 高中数学 > 题目详情

已知函数数学公式.(a,b∈R)
( I)若f'(0)=f'(2)=1,求函数f(x)的解析式;
( II)若b=a+2,且f(x)在区间(0,1)上单调递增,求实数a的取值范围.

解:(Ⅰ)因为f'(x)=x2-2ax+b,
由f'(0)=f'(2)=1即
所以f(x)的解析式为
(Ⅱ)若b=a+2,则f'(x)=x2-2ax+a+2,△=4a2-4(a+2),
(1)当△≤0,即-1≤a≤2时,f'(x)≥0恒成立,那么f(x)在R上单调递增,
所以,当-1≤a≤2时,f(x)在区间(0,1)上单调递增;
(2)当△>0,即a>2或a<-1时,
因为f'(x)=x2-2ax+a+2的对称轴方程为x=a
要使函数f(x)在区间(0,1)上单调递增,

解得-2≤a<-1或2<a≤3.
综上:当a∈[-2,3]时,函数f(x)在区间(0,1)上单调递增.
分析:(Ⅰ)先求出函数的导数,再根据f'(0)=f'(2)=1,就可求出a,b的值,代入函数解析式即可.
( II)把b=a+2代入,使函数中只含参数a,因为f(x)在区间(0,1)上单调递增,所以区间(0,1)是函数增区间的一个子区间,而函数是二次函数,开口向上,所以在对称轴右侧为增函数,所以只要(0,1)位于函数对称轴右侧即可.
点评:本题考查了导数的求法,以及函数单调性的判断,做题时要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-b)(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),给出下列三个命题:
①函数f(x)的图象关于x轴上某点成中心对称;
②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;
③关于x的方程g(x)=0的解集可能为{-4,-2,0,3}.
则是真命题的有
①②
①②
.(不选、漏选、选错均不给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,其中ab为实常数.

(Ⅰ)求函数为奇函数的充要条件;

(Ⅱ)若任取a∈[0,4],b∈[0,3],求函数在R上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的,不等式f(x)≤10在上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年北京市海淀区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数.(a,b∈R)
( I)若f'(0)=f'(2)=1,求函数f(x)的解析式;
( II)若b=a+2,且f(x)在区间(0,1)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年《龙门亮剑》高三数学(理科)一轮复习:第2章第10节(人教AB通用)(解析版) 题型:解答题

已知函数,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的,不等式f(x)≤10在上恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案