精英家教网 > 高中数学 > 题目详情

【题目】已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件.今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为元/件(),则新增的年销量(万件).

(1)写出今年商户甲的收益(单位:万元)与的函数关系式;

(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

【答案】(1) ).(2)见解析.

【解析】试题分析:(1)直接根据题意可写成几年的销售量,从而可计算出客户甲的收益;

(2)根据(1)总监理的函数,求导,利用导数等于,求得函数的极大值点和极大值,在求出时的函数值,比较即可得到函数的最大值,进而得到结论.

试题解析:

(1)由题意知,今年的年销售量为(万件).

因为每销售一件,商户甲可获利元,

所以今年商户甲的收益

).

(2)由

,解得

时,;当时,

时,

为极大值点,极大值为

,∴当或2时,在区间上的最大值为1(万元),而往年的收益为(万元),

所以商户甲采取降低单价提高销量的营销策略不能获得比往年更大的收益.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是等边三角形,边长为4, 边的中点为,椭圆 为左、右两焦点,且经过两点。

(1)求该椭圆的标准方程;

(2)过点轴不垂直的直线交椭圆于 两点,求证:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(1)试根据上述数据完成列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

45

比较粗心

合计

60

100

(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

参考数据:独立检验随机变量的临界值参考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程是为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,若直线与曲线交于 两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为三角形的三边,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(1)试根据上述数据完成列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

45

比较粗心

合计

60

100

(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

参考数据:独立检验随机变量的临界值参考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见下图)

(Ⅰ)求所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案