精英家教网 > 高中数学 > 题目详情
如图所示,直角梯形ABCD中,∠A=∠D=90°,AD=2,AB=3,CD=4,P在线段AB上,BP=1,O在CD上,且OP∥AD,将图甲沿OP折叠使得平面OCBP⊥底面ADOP,得到一个多面体(如图乙),M、N分别是AC、OP的中点.
(1)求证:MN⊥平面ACD;
(2)求平面ABC与底面OPAD所成角(锐角)的余弦值.

【答案】分析:(1)取CD中点Q,结合已知条件,利用线面垂直的判定定理证出OQ垂直于平面ACD,通过证明四边形OQMN为平行四边形得到OQ平行于MN,从而证出要证的结论;
(2)以O为坐标原点,分别以OP,OD,OC为x轴,y轴,z轴建立空间直角坐标系,求出平面ABC与底面OPAD的一个法向量,利用法向量所成角的余弦值得到平面ABC与底面OPAD所成角(锐角)的余弦值.
解答:(1)证明:如图,
取CD的中点为Q,连接MQ,OQ,
因为OC=OD,所以OQ⊥CD,
依题意知:面OCD⊥底面OPAD,
AD⊥OD,AD⊥平面OCD,
而OQ?面OCD,AD⊥OQ,
又CD∩AD=D,
所以OQ⊥面ACD,
MQ是△ACD的中位线,故MQ∥,MQ=
NO∥,NO=
则MQNO,所以MN∥OQ,
故MN⊥平面ACD;
(2)解:如图所示,分别以OP,OD,OC为x轴,y轴,z轴建立空间直角坐标系.
B(2,0,1),A(2,2,0)C(0,0,2),
底面OPAD的一个法向量
设平面ABC的法向量为
依题知:

令x=1,则y=1,z=2,
所以
故平面ABC与底面OPAD所成角的余弦值为
点评:本题考查了直线与平面垂直的判定,考查了二面角的平面角及其求法,综合考查了学生的空间想象能力和思维能力,解答的关键是明确折叠问题在折叠前后的变量和不变量,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)如图所示,直角梯形ABCD中,∠A=∠D=90°,AD=2,AB=3,CD=4,P在线段AB上,BP=1,O在CD上,且OP∥AD,将图甲沿OP折叠使得平面OCBP⊥底面ADOP,得到一个多面体(如图乙),M、N分别是AC、OP的中点.
(1)求证:MN⊥平面ACD;
(2)求平面ABC与底面OPAD所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是(  )
A.圆台B.圆锥
C.由圆台和圆锥组合而成D.由圆柱和圆锥组合而成
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCD中,∠BAD=∠ADC=90°,CD=DA=a,AB=2a,SA⊥平面ABCD,且SA=a,

(1)求证:△SAD、△SAB、△SDC、△SCB都是直角三角形;

(2)在SD上取点M,SC交平面ABM于N,求证:四边形ABNM是直角梯形;

(3)若SM=x,写出BM=f(x)的表达式,并求当x为何值时,BM最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省运城市临猗中学高二(上)周测数学试卷(七)(理科)(解析版) 题型:选择题

如图所示,直角梯形ABCD绕边AD所在直线旋转一周形成的面所围成的旋转体是( )
A.圆台
B.圆锥
C.由圆台和圆锥组合而成
D.由圆柱和圆锥组合而成

查看答案和解析>>

同步练习册答案