A. | $x=-\frac{π}{6}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{2}$ |
分析 利用三角恒等变换化简函数的解析式为 f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,由函数y=Asin(ωx+φ)的图象变换可求函数g(x),令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,利用正弦函数的对称性即可得解.
解答 解:f(x)=$\sqrt{3}$sinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
图象上各点的纵坐标不变,横坐标变为原来的2倍,可得对应的函数解析式为y=sin(x-$\frac{π}{6}$)+$\frac{1}{2}$,
再沿x轴向右平移$\frac{π}{6}$个单位,得到函数解析式为y=g(x)=sin(x-$\frac{π}{6}$-$\frac{π}{6}$)+$\frac{1}{2}$=sin(x-$\frac{π}{3}$)+$\frac{1}{2}$,
令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得:x=kπ+$\frac{5π}{6}$,k∈Z,
取k=-1,可得:x=-$\frac{π}{6}$.
故选:A.
点评 本题主要考查三角函数的恒等变换及化简求值,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (-2,-1] | B. | [-2,-1] | C. | (-∞,-2]∪[-1,+∞) | D. | (-∞,-2)∪(-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,1] | B. | (0,2) | C. | [-2,2] | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com