精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:()利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;()证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;()利用等体积法求三棱锥A-MOC的体积即可

试题解析:()证明:∵OM分别为ABVA的中点,

∴OM∥VB

∵VB平面MOCOM平面MOC

∴VB∥平面MOC

)证明:∵AC=BCOAB的中点,

∴OC⊥AB

平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC平面ABC

∴OC⊥平面VAB

∵OC平面MOC

平面MOC⊥平面VAB

)在等腰直角三角形中,

所以.

所以等边三角形的面积.

又因为平面

所以三棱锥的体积等于.

又因为三棱锥的体积与三棱锥的体积相等,

所以三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】αβ为两个不同平面,ab为两条不同直线,下列选项正确的是(  )

①若aαbα,则ab

②若aααβ,则aβ

③若αβaβ,则

④若aα,则a与平面α内的无数条直线平行

⑤若ab,则a平行于经过b的所有平面

A.①②B.③④C.②④D.②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况.发现被测试市民正确书写汉字的个数全部在160184之间,将测试结果按如下方式分成六组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

(1)试估计该市市民正确书写汉字的个数的平均数与中位数;

(2)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

1)确定的解析式;

2)判断上的单调性,并用定义证明;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点的坐标是(

参考公式:若的顶点的坐标分别是,则该的重心的坐标为.

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,有下列说法:

1)函数满足则函数在上不是单调减函数;

2)对任意的 函数满足则函数在上是单调增函数;

3)函数满足则函数是偶函数;

4)函数满足则函数不是奇函数.

其中,正确的说法是________(填写相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了公斤这种鲜鱼,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于元的概率.

查看答案和解析>>

同步练习册答案