【题目】己知函数.(是常数,且()
(Ⅰ)求函数的单调区间;
(Ⅱ)当在处取得极值时,若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;
(Ⅲ)求证:当时.
【答案】(Ⅰ)减区间为,增区间为.;(Ⅱ);(Ⅲ)见解析.
【解析】分析:(Ⅰ)先对函数求导,再分别解与,即可得函数的单调区间;(Ⅱ)根据在处取得极值,可得,再设,利用导数研究函数的单调性,根据关于的方程在上恰有两个不相等的实数根,可得,解不等式即可得出实数的取值范围;(Ⅲ)根据(Ⅰ)和(Ⅱ)可知当时,即,令,对进行放缩,即可证明.
详解:(Ⅰ)由已知比函数的定义域为,
由得,由,得.
所以函数的减区间为,增区间为..
(Ⅱ)由题意,得.
∴
∴
∴,即.
∴,
设,则.
当变化时,的变化情况如下表:
1 | 2 | ||||
0 | - | 0 | + | ||
∵方程在上恰有两个不相等的实数根
∴
∴
∴即.
(Ⅲ)由(Ⅰ)和(Ⅱ)可知当时,即,
∴当时,,
令时,,即.
∴.
科目:高中数学 来源: 题型:
【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的焦点为顶点作相似椭圆.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.
8 | 9 | 10 | 11 | 12 | 13 | |
频数 | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;
(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?
(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.
(Ⅰ)求至少回答对一个问题的概率;
(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;
(Ⅲ)求这位挑战者闯关成功的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com