精英家教网 > 高中数学 > 题目详情
设{an}为等差数列,公差d=-2,Sn为其前n项和.若S10=S11,则a1=
20
20
分析:由等差数列的前10项的和等于前11项的和可知,第11项的值为0,然后根据等差数列的通项公式,利用首项和公差d表示出第11项,让其等于0列出关于首项的方程,求出方程的解即可得到首项的值.
解答:解:由S10=S11
得到a1+a2+…+a10=a1+a2+…+a10+a11,即a11=0,
∴a11=a1+(11-1)d=a1-2(11-1)=0,
解得:a1=20.
故答案为:20
点评:此题考查了等差数列的前n项和公式,以及等差数列的通项公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设an为等差数列,bn为等比数列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求数列cn的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、设{an}为等差数列,公差d=-2,sn为其前n项和,若s10=s11,则a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,则下列数列中,成等差数列的个数为(  )
①{an2} ②{pan} ③{pan+q} ④{nan}(p、q为非零常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(2)令bn=C an(注释:bn等于C的an次方),(其中C为常数,且C≠0,n∈N*),求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,a1>0,a6+a7>0,a6•a7<0则使Sn>0成立的最大的n为(  )

查看答案和解析>>

同步练习册答案