精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的零点个数;

(2)已知,证明:当时,.

【答案】(1)当时,个零点;当时,个零点;当时,个零点.(2)见解析

【解析】分析:(1)先换元,令得到,转化成求函数的零点个数,再对a分类讨论求函数的零点个数. (2)先转化成只需证.再转化成左边函数的最大值,小于右边函数的最小值.

详解:(1)..

,则函数的零点个数情况一致. .

1)时,上单调递增.

个零点.

2)时,上单调递增,上单调递减.

.

时,,无零点.

时,个零点.

时,,又.

上单调递增,两个零点.

综上:当时,个零点;当时,个零点;当时,个零点.

(2)要证只需证.

,只需证:.

上单调递增,在上单调递减,.

上单调递增,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.若是该椭圆上的一个动点的最大值为1.

(1)求椭圆的方程

(2)设直线与椭圆交于两点关于轴的对称点为(不重合)则直线轴是否交于一个定点若是请写出定点坐标并证明你的结论若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上有定义,要使函数有定义,则a的取值范围为

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

1)已知,利用上述性质,求的单调区间和值域;

2)对于(1)中的函数和函数,若对任意的,总存在使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的三边,求证:方程有公共根的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,过焦点的直线交抛物线两点.

(1)求抛物线的方程以及的值;

(2)记抛物线的准线与轴交于点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C离心率为,其短轴长为2.

(1)求椭圆C的标准方程;

(2)如图,A为椭圆C的左顶点,PQ为椭圆C上两动点,直线POAQE,直线QOAPD,直线OP与直线OQ的斜率分别为,且为非零实数),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店经营的某种消费品的进价为每件14元,月销售量(百件)与每件的销售价格(元)的关系如图所示,每月各种开支2 000元.

(1)写出月销售量(百件)关于每件的销售价格(元)的函数关系式.

(2)写出月利润(元)与每件的销售价格(元)的函数关系式.

(3)当该消费品每件的销售价格为多少元时,月利润最大?并求出最大月利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

同步练习册答案