精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.

【答案】解:(Ⅰ)设 则a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程两边同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2﹣2bccosA
故cosA=﹣ ,A=120°
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°﹣B)
= cosB+ sinB
=sin(60°+B)
故当B=30°时,sinB+sinC取得最大值1
【解析】(Ⅰ)根据正弦定理,设 ,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc 再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin(60°+B)根据三角函数的性质,得出最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间等.

(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;

(2)根据所给数据,以事件发生的频率作为相应事件发生的概率,求乙校得分的等级高于甲校得分的等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,侧面是边长为的等边三角形,底面是矩形,且,则该四棱锥外接球的表面积等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x+m在区间 上的最小值为3,求常数m的值及此函数当x∈[a,a+π](其中a可取任意实数)时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点, 为坐标原点,点在椭圆上,线段轴的交点满足

(Ⅰ)求椭圆的标准方程;

(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列 的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,侧面是边长为4的等边三角形,底面为菱形,侧面与底面所成的二面角为.

(1)求点到平面的距离;

(2)若的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为),上一点,以为边作等边三角形,且三点按逆时针方向排列.

(Ⅰ)当点上运动时,求点运动轨迹的直角坐标方程;

(Ⅱ)若曲线 ,经过伸缩变换得到曲线,试判断点的轨迹与曲线是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

同步练习册答案