精英家教网 > 高中数学 > 题目详情

(16分)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,

P为侧棱SD上的点。

(Ⅰ)求证:ACSD;       

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平

面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

 

 

【答案】

【解析】解法一:

     (Ⅰ)连BD,设AC交BD于O,由题意。在正方形ABCD中,,所以,得.[来源:学.科.网Z.X.X.K]

      (Ⅱ)设正方形边长,则

,所以,

      连,由(Ⅰ)知,所以,     

,所以是二面角的平面角。

,知,所以,

即二面角的大小为

  (Ⅲ)在棱SC上存在一点E,使

由(Ⅱ)可得,故可在上取一点,使,过的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.

解法二:

     (Ⅰ);连,设交于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。[来源:ZXXK]

   设底面边长为,则高

   于是    

                    

           

           

              

故     

从而  

      (Ⅱ)由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为[来源:Z_xx_k.Com]

     (Ⅲ)在棱上存在一点使.[来源:]

      由(Ⅱ)知是平面的一个法向量,

    且  

设           

则      [来源:ZXXK]

而      

即当时,        [来源:ZXXK]

不在平面内,故

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案