精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AB=AC=4,BC=6,以AB为直径的圆交BC于点D,过点D作该圆的切线,交AC于点E,则CE=( )

A.7
B.
C.9
D.3
【答案】分析:根据等腰三角形的三线合一求得CD的长,利用切线的性质求得DE⊥AC,再根据射影定理即可求出CE.
解答:解:连结AD,OD,根据题意,得AB=AC=5;
∵AB是直径,
∴AD⊥BC,
∴BD=CD=3,
又BO=OA,∴DO∥CA,
DE是圆的切线,∴DE⊥OD,
∴DE⊥AC,
在直角三角形ADC中,DC2=CE•CA,
即32=4CE,
∴CE=
故选B.
点评:本题主要考查了与圆有关的比例线段,掌握切线的性质,解答关键是根据等腰三角形的性质、射影定理等进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案